These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation. Yagi M; Tomita E; Sakita S; Kuwabara T; Nagai K J Phys Chem B; 2005 Nov; 109(46):21489-91. PubMed ID: 16853788 [TBL] [Abstract][Full Text] [Related]
7. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Wang C; Xie Z; deKrafft KE; Lin W J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787 [TBL] [Abstract][Full Text] [Related]
8. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. Wang C; Wang JL; Lin W J Am Chem Soc; 2012 Dec; 134(48):19895-908. PubMed ID: 23136923 [TBL] [Abstract][Full Text] [Related]
9. Probing the oxidation chemistry of half-sandwich iridium complexes with oxygen atom transfer reagents. Turlington CR; Harrison DP; White PS; Brookhart M; Templeton JL Inorg Chem; 2013 Oct; 52(19):11351-60. PubMed ID: 24063760 [TBL] [Abstract][Full Text] [Related]
11. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3. Mondloch JE; Wang Q; Frenkel AI; Finke RG J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical water oxidation with carbon-grafted iridium complexes. deKrafft KE; Wang C; Xie Z; Su X; Hinds BJ; Lin W ACS Appl Mater Interfaces; 2012 Feb; 4(2):608-13. PubMed ID: 22292527 [TBL] [Abstract][Full Text] [Related]
14. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain. Choudary BM; Chowdari NS; Madhi S; Kantam ML J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786 [TBL] [Abstract][Full Text] [Related]
15. Distinguishing between homogeneous and heterogeneous hydrogen-evolution catalysis with molecular cobalt complexes. Sconyers DJ; Blakemore JD Chem Commun (Camb); 2017 Jun; 53(53):7286-7289. PubMed ID: 28426091 [TBL] [Abstract][Full Text] [Related]
16. Electrogenerated IrO(x) nanoparticles as dissolved redox catalysts for water oxidation. Nakagawa T; Bjorge NS; Murray RW J Am Chem Soc; 2009 Nov; 131(43):15578-9. PubMed ID: 19810729 [TBL] [Abstract][Full Text] [Related]
17. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. van Dijk B; Rodriguez GM; Wu L; Hofmann JP; Macchioni A; Hetterscheid DGH ACS Catal; 2020 Apr; 10(7):4398-4410. PubMed ID: 32280560 [TBL] [Abstract][Full Text] [Related]
18. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst. Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520 [TBL] [Abstract][Full Text] [Related]
19. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis. Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. Stracke JJ; Finke RG J Am Chem Soc; 2011 Sep; 133(38):14872-5. PubMed ID: 21894961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]