These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21672134)

  • 41. Cardiac acceleration as a marker of vagal withdrawal in heart rate control during exercise in humans.
    Bokhari SS; Ahmad HR; Subhan MM; Ali SA; Khan MN
    J Pak Med Assoc; 2003 Aug; 53(8):375-8. PubMed ID: 14558748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats.
    Medeiros A; Oliveira EM; Gianolla R; Casarini DE; Negrão CE; Brum PC
    Braz J Med Biol Res; 2004 Dec; 37(12):1909-17. PubMed ID: 15558199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sympatho-Vagal Imbalance is Associated with Sarcopenia in Male Patients with Heart Failure.
    Fonseca GWPD; Santos MRD; Souza FR; Costa MJAD; Haehling SV; Takayama L; Pereira RMR; Negrão CE; Anker SD; Alves MJNN
    Arq Bras Cardiol; 2019 Jun; 112(6):739-746. PubMed ID: 30970141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autonomic modulations of heart rate variability and performances in short-distance elite swimmers.
    Merati G; Maggioni MA; Invernizzi PL; Ciapparelli C; Agnello L; Veicsteinas A; Castiglioni P
    Eur J Appl Physiol; 2015 Apr; 115(4):825-35. PubMed ID: 25471271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ischemic preconditioning boosts post-exercise but not resting cardiac vagal control in endurance runners.
    Sabino-Carvalho JL; Obeid-Freitas T; Paula-Ribeiro M; Lopes TR; Ferreira THN; Succi JE; Silva AC; Silva BM
    Eur J Appl Physiol; 2019 Mar; 119(3):621-632. PubMed ID: 30542933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes.
    Iellamo F; Legramante JM; Pigozzi F; Spataro A; Norbiato G; Lucini D; Pagani M
    Circulation; 2002 Jun; 105(23):2719-24. PubMed ID: 12057984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels.
    Hautala AJ; Mäkikallio TH; Seppänen T; Huikuri HV; Tulppo MP
    Clin Physiol Funct Imaging; 2003 Jul; 23(4):215-23. PubMed ID: 12914561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiac vagal index does not explain age-independent maximal heart rate.
    Duarte CV; Araujo CG
    Int J Sports Med; 2013 Jun; 34(6):502-6. PubMed ID: 23175180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autonomic heart rate regulation during mild dynamic exercise in humans: insights from respiratory sinus arrhythmia.
    Sone R; Tan N; Nishiyasu T; Yamazaki F
    Jpn J Physiol; 2004 Jun; 54(3):273-84. PubMed ID: 15541205
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exercise and autonomic function in health and cardiovascular disease.
    Rosenwinkel ET; Bloomfield DM; Arwady MA; Goldsmith RL
    Cardiol Clin; 2001 Aug; 19(3):369-87. PubMed ID: 11570111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sympatho-vagal changes induced by physical training in cardiac patients.
    Lehmann M; Keul J
    Eur Heart J; 1988 Apr; 9 Suppl F():55-61. PubMed ID: 3391185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sluggish vagal brake reactivity to physical exercise challenge in children with selective mutism.
    Heilman KJ; Connolly SD; Padilla WO; Wrzosek MI; Graczyk PA; Porges SW
    Dev Psychopathol; 2012 Feb; 24(1):241-50. PubMed ID: 22293007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heart rate dynamics during accentuated sympathovagal interaction.
    Tulppo MP; Mäkikallio TH; Seppänen T; Airaksinen JK; Huikuri HV
    Am J Physiol; 1998 Mar; 274(3):H810-6. PubMed ID: 9530192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can strenuous exercise harm the heart? Insights from a study of cardiovascular neural regulation in amateur triathletes.
    Dalla Vecchia LA; Barbic F; De Maria B; Cozzolino D; Gatti R; Dipaola F; Brunetta E; Zamuner AR; Porta A; Furlan R
    PLoS One; 2019; 14(5):e0216567. PubMed ID: 31063482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autonomic neural control of heart rate during dynamic exercise: revisited.
    White DW; Raven PB
    J Physiol; 2014 Jun; 592(12):2491-500. PubMed ID: 24756637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cardiac vagal withdrawal and reactivation during repeated rest-exercise transitions.
    Ricardo DR; Silva BM; Vianna LC; Araújo CG
    Eur J Appl Physiol; 2010 Nov; 110(5):933-42. PubMed ID: 20645106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiac vagal modulation of heart rate during prolonged submaximal exercise in animals with healed myocardial infarctions: effects of training.
    Kukielka M; Seals DR; Billman GE
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1680-5. PubMed ID: 16339826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure.
    Imai K; Sato H; Hori M; Kusuoka H; Ozaki H; Yokoyama H; Takeda H; Inoue M; Kamada T
    J Am Coll Cardiol; 1994 Nov; 24(6):1529-35. PubMed ID: 7930286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single session of whole-body cryotherapy boosts maximal cycling performance and enhances vagal drive at rest.
    Storniolo JL; Chaulan M; Esposti R; Cavallari P
    Exp Brain Res; 2023 Feb; 241(2):383-393. PubMed ID: 36544016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of the cold pressor test on cardiac autonomic control in normal subjects.
    Mourot L; Bouhaddi M; Regnard J
    Physiol Res; 2009; 58(1):83-91. PubMed ID: 18198985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.