These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2639 related articles for article (PubMed ID: 21672641)
1. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone). Safaei Nikouei N; Lavasanifar A Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641 [TBL] [Abstract][Full Text] [Related]
2. Thermoreversible hydrogels based on triblock copolymers of poly(ethylene glycol) and carboxyl functionalized poly(ε-caprolactone): The effect of carboxyl group substitution on the transition temperature and biocompatibility in plasma. Safaei Nikouei N; Vakili MR; Bahniuk MS; Unsworth L; Akbari A; Wu J; Lavasanifar A Acta Biomater; 2015 Jan; 12():81-92. PubMed ID: 25451305 [TBL] [Abstract][Full Text] [Related]
3. Temperature/pH Responsive Hydrogels Based on Poly(ethylene glycol) and Functionalized Poly(e-caprolactone) Block Copolymers for Controlled Delivery of Macromolecules. Nikouei NS; Ghasemi N; Lavasanifar A Pharm Res; 2016 Feb; 33(2):358-66. PubMed ID: 26415645 [TBL] [Abstract][Full Text] [Related]
4. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819 [TBL] [Abstract][Full Text] [Related]
5. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. Jiang Z; Hao J; You Y; Liu Y; Wang Z; Deng X J Biomed Mater Res A; 2008 Oct; 87(1):45-51. PubMed ID: 18080306 [TBL] [Abstract][Full Text] [Related]
7. Self-associating poly(ethylene oxide)-b-poly(alpha-cholesteryl carboxylate-epsilon-caprolactone) block copolymer for the solubilization of STAT-3 inhibitor cucurbitacin I. Mahmud A; Patel S; Molavi O; Choi P; Samuel J; Lavasanifar A Biomacromolecules; 2009 Mar; 10(3):471-8. PubMed ID: 19175305 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers. Yang Y; Hua C; Dong CM Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers. Letchford K; Zastre J; Liggins R; Burt H Colloids Surf B Biointerfaces; 2004 May; 35(2):81-91. PubMed ID: 15261040 [TBL] [Abstract][Full Text] [Related]
11. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Zhang J; Wang LQ; Wang H; Tu K Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309 [TBL] [Abstract][Full Text] [Related]
12. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of six-arm star poly(delta-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Zeng F; Lee H; Chidiac M; Allen C Biomacromolecules; 2005; 6(4):2140-9. PubMed ID: 16004456 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Loh XJ; Colin Sng KB; Li J Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319 [TBL] [Abstract][Full Text] [Related]
15. Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Shim WS; Kim SW; Lee DS Biomacromolecules; 2006 Jun; 7(6):1935-41. PubMed ID: 16768417 [TBL] [Abstract][Full Text] [Related]
16. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
17. Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers and their applications as thermo-sensitive materials. Kim MS; Seo KS; Khang G; Cho SH; Lee HB J Biomed Mater Res A; 2004 Jul; 70(1):154-8. PubMed ID: 15174120 [TBL] [Abstract][Full Text] [Related]
18. Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(ɛ-caprolactone): An in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity. Garg SM; Vakili MR; Lavasanifar A Colloids Surf B Biointerfaces; 2015 Aug; 132():161-70. PubMed ID: 26037706 [TBL] [Abstract][Full Text] [Related]
19. Spontaneously self-assembled micelles from poly(ethylene glycol)-b-poly(epsilon-caprolactone-co-trimethylene carbonate) for drug solubilization. Latere DJ; Rouxhet L; Brewster ME; Préat V; Ariën A Pharmazie; 2008 Mar; 63(3):235-40. PubMed ID: 18444514 [TBL] [Abstract][Full Text] [Related]
20. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Moretton MA; Glisoni RJ; Chiappetta DA; Sosnik A Colloids Surf B Biointerfaces; 2010 Sep; 79(2):467-79. PubMed ID: 20627665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]