These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21672667)

  • 21. Evolutionary pathway of the Beijing lineage of Mycobacterium tuberculosis based on genomic deletions and mutT genes polymorphisms.
    Rindi L; Lari N; Cuccu B; Garzelli C
    Infect Genet Evol; 2009 Jan; 9(1):48-53. PubMed ID: 18977316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants.
    Gordon SV; Bottai D; Simeone R; Stinear TP; Brosch R
    Bioessays; 2009 Apr; 31(4):378-88. PubMed ID: 19274661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale.
    Schürch AC; Kremer K; Kiers A; Daviena O; Boeree MJ; Siezen RJ; Smith NH; van Soolingen D
    Infect Genet Evol; 2010 Jan; 10(1):108-14. PubMed ID: 19835997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversification of gene content in the
    Silva-Pereira TT; Soler-Camargo NC; Guimarães AMS
    Microbiol Spectr; 2024 Feb; 12(2):e0228923. PubMed ID: 38230932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycobacterial Pathogenomics and Evolution.
    Bottai D; Stinear TP; Supply P; Brosch R
    Microbiol Spectr; 2014 Feb; 2(1):MGM2-0025-2013. PubMed ID: 26082120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative genomics of mycobacteria: some answers, yet more new questions.
    Behr MA
    Cold Spring Harb Perspect Med; 2014 Nov; 5(2):a021204. PubMed ID: 25395374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionary changes in the genome of Mycobacterium tuberculosis and the human genome from 9000 years BP until modern times.
    Spigelman M; Donoghue HD; Abdeen Z; Ereqat S; Sarie I; Greenblatt CL; Pap I; Szikossy I; Hershkovitz I; Bar-Gal GK; Matheson C
    Tuberculosis (Edinb); 2015 Jun; 95 Suppl 1():S145-9. PubMed ID: 25771203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single nucleotide polymorphisms in cell wall biosynthesis-associated genes and phylogeny of Mycobacterium tuberculosis lineages.
    Chuang PC; Chen YM; Chen HY; Jou R
    Infect Genet Evol; 2010 May; 10(4):459-66. PubMed ID: 20223296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycobacterium tuberculosis Uganda genotype is the predominant cause of TB in Kampala, Uganda.
    Asiimwe BB; Koivula T; Källenius G; Huard RC; Ghebremichael S; Asiimwe J; Joloba ML
    Int J Tuberc Lung Dis; 2008 Apr; 12(4):386-91. PubMed ID: 18371263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Screening and analysis of in vivo induced genes of Mycobacterium tuberculosis].
    Zhang ZD; Li ZH; DU BP; Jia HY; Liu ZQ; Chen X; Huang HR; Xing AY; Gu SX; Ma Y
    Zhonghua Yi Xue Za Zhi; 2008 Jan; 88(3):189-93. PubMed ID: 18361819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis.
    Bange FC; Collins FM; Jacobs WR
    Tuber Lung Dis; 1999; 79(3):171-80. PubMed ID: 10656115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing Mycobacterium tuberculosis genomes using genome topology networks.
    Jiang J; Gu J; Zhang L; Zhang C; Deng X; Dou T; Zhao G; Zhou Y
    BMC Genomics; 2015 Feb; 16(1):85. PubMed ID: 25766780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent.
    Boritsch EC; Supply P; Honoré N; Seemann T; Stinear TP; Brosch R
    Mol Microbiol; 2014 Sep; 93(5):835-52. PubMed ID: 25039682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis.
    Sapriel G; Brosch R
    Genome Biol Evol; 2019 Aug; 11(8):2420-2438. PubMed ID: 31368488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative genomics of the mycobacteria.
    Brosch R; Gordon SV; Pym A; Eiglmeier K; Garnier T; Cole ST
    Int J Med Microbiol; 2000 May; 290(2):143-52. PubMed ID: 11045919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relaxed selection drives a noisy noncoding transcriptome in members of the Mycobacterium tuberculosis complex.
    Dinan AM; Tong P; Lohan AJ; Conlon KM; Miranda-CasoLuengo AA; Malone KM; Gordon SV; Loftus BJ
    mBio; 2014 Aug; 5(4):e01169-14. PubMed ID: 25096875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-evolution of Mycobacterium tuberculosis and Homo sapiens.
    Brites D; Gagneux S
    Immunol Rev; 2015 Mar; 264(1):6-24. PubMed ID: 25703549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex.
    Chiner-Oms Á; Comas I
    Infect Genet Evol; 2019 Aug; 72():10-15. PubMed ID: 30822550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic insights into tuberculosis.
    Galagan JE
    Nat Rev Genet; 2014 May; 15(5):307-20. PubMed ID: 24662221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.