These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21672779)

  • 1. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress.
    Georgiou CD; Patsoukis N; Papapostolou I; Zervoudakis G
    Integr Comp Biol; 2006 Dec; 46(6):691-712. PubMed ID: 21672779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Petropoulou KP
    Mycologia; 2003; 95(2):308-16. PubMed ID: 21156616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Tairis N; Kornaros M
    Fungal Genet Biol; 2001 Oct; 34(1):11-20. PubMed ID: 11567548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi.
    Papapostolou I; Georgiou CD
    J Appl Microbiol; 2010 Dec; 109(6):1929-36. PubMed ID: 20681971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou DC
    Mycol Res; 2008 May; 112(Pt 5):602-10. PubMed ID: 18400483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase.
    Papapostolou I; Georgiou CD
    Fungal Biol; 2010; 114(5-6):387-95. PubMed ID: 20943149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou CD
    Mycopathologia; 2007 Jun; 163(6):335-47. PubMed ID: 17387631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Patsoukis N; Georgiou CD
    J Appl Microbiol; 2008 Jan; 104(1):42-50. PubMed ID: 17850300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna.
    He P; Wang K; Cai Y; Hu X; Zheng Y; Zhang J; Liu W
    Micron; 2018 Jun; 109():34-40. PubMed ID: 29614428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipofuscins and sclerotial differentiation in phytopathogenic fungi.
    Georgiou CD; Zees A
    Mycopathologia; 2002; 153(4):203-8. PubMed ID: 12014481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study.
    Papapostolou I; Georgiou CD
    Microbiology (Reading); 2010 Mar; 156(Pt 3):960-966. PubMed ID: 20007647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor.
    Osato T; Park P; Ikeda K
    Fungal Biol; 2017 Feb; 121(2):127-136. PubMed ID: 28089044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Papapostolou I; Sideri M; Georgiou CD
    Microbiol Res; 2014; 169(7-8):527-32. PubMed ID: 24388556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani.
    Patsoukis N; Georgiou CD
    Arch Microbiol; 2007 Sep; 188(3):225-33. PubMed ID: 17429612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species induce sclerotial formation in Morchella importuna.
    Liu Q; Zhao Z; Dong H; Dong C
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7997-8009. PubMed ID: 29959464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-carotene production and sclerotial differentiation in Sclerotinia minor.
    Zervoudakis G; Tairis N; Salahas G; Georgiou CD
    Mycol Res; 2003 May; 107(Pt 5):624-31. PubMed ID: 12884961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor.
    Swamy BM; Bhat AG; Hegde GV; Naik RS; Kulkarni S; Inamdar SR
    Glycobiology; 2004 Nov; 14(11):951-7. PubMed ID: 15253931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of copper-induced oxidative stress on sclerotial differentiation and antioxidants contents of Penicillium thomii Q1.
    Zhao WJ; An CH; Long DD; Zhang ZQ; Han JR
    J Basic Microbiol; 2014 Dec; 54(12):1395-402. PubMed ID: 24002994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ascorbic acid role in the differentiation of sclerotia in Sclerotinia minor.
    Georgiou CD; Petropoulou KP
    Mycopathologia; 2002; 154(2):71-7. PubMed ID: 12086103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oxidative stress and exogenous beta-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95.
    Han JR; Zhao WJ; Gao YY; Yuan JM
    Lett Appl Microbiol; 2005; 40(6):412-7. PubMed ID: 15892735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.