These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21672854)

  • 1. Contextual learning and obstacle memory in the walking cat.
    McVea DA; Pearson KG
    Integr Comp Biol; 2007 Oct; 47(4):457-64. PubMed ID: 21672854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-lasting memories of obstacles guide leg movements in the walking cat.
    McVea DA; Pearson KG
    J Neurosci; 2006 Jan; 26(4):1175-8. PubMed ID: 16436604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object avoidance during locomotion.
    McVea DA; Pearson KG
    Adv Exp Med Biol; 2009; 629():293-315. PubMed ID: 19227506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex.
    McVea DA; Taylor AJ; Pearson KG
    J Neurosci; 2009 Jul; 29(29):9396-404. PubMed ID: 19625530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hind limb stepping over obstacles in the horse guided by place-object memory.
    Whishaw IQ; Sacrey LA; Gorny B
    Behav Brain Res; 2009 Mar; 198(2):372-9. PubMed ID: 19071161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.
    Wong C; Wong G; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Feb; 28(2):561-573. PubMed ID: 28013232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Cooling-induced Deactivations to Study Cortical Contributions to Obstacle Memory in the Walking Cat.
    Wong C; Lomber SG
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of Parietal Cortex to the Working Memory of an Obstacle Acquired Visually or Tactilely in the Locomoting Cat.
    Wong C; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Sep; 28(9):3143-3158. PubMed ID: 28981640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Updating neural representations of objects during walking.
    Pearson K; Gramlich R
    Ann N Y Acad Sci; 2010 Jun; 1198():1-9. PubMed ID: 20536915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between cognitive and sensory load while planning and controlling complex gait adaptations in Parkinson's disease.
    Pieruccini-Faria F; Ehgoetz Martens KA; Silveira CR; Jones JA; Almeida QJ
    BMC Neurol; 2014 Dec; 14():250. PubMed ID: 25528474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?
    Worden TA; De Jong AF; Vallis LA
    Gait Posture; 2016 Jan; 43():38-41. PubMed ID: 26669949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent voluntary correction and savings in locomotor learning.
    Leech KA; Roemmich RT
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29903840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activity of neurons of the motor-sensory cortex of the cat during natural locomotion while stepping over obstacles].
    Beloozerova IN; Sirota MG
    Neirofiziologiia; 1986; 18(4):546-9. PubMed ID: 3762798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pickup of visual information about size and location during approach to an obstacle.
    Diaz GJ; Parade MS; Barton SL; Fajen BR
    PLoS One; 2018; 13(2):e0192044. PubMed ID: 29401511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion.
    McFadyen BJ; Lavoie S; Drew T
    Exp Brain Res; 1999 Apr; 125(4):502-10. PubMed ID: 10323297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input.
    Marigold DS; Chang AJ; Lajoie K
    Exp Brain Res; 2017 Aug; 235(8):2483-2493. PubMed ID: 28512726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.