These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21672857)

  • 1. Reflections on integrative and comparative movement neuroscience.
    Stuart DG
    Integr Comp Biol; 2007 Oct; 47(4):482-504. PubMed ID: 21672857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of in vitro preparations and their contribution to understanding the neural control of behavior in vertebrates.
    Keifer J
    J Neurophysiol; 2022 Sep; 128(3):511-526. PubMed ID: 35946803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some historical reflections on the neural control of locomotion.
    Clarac F
    Brain Res Rev; 2008 Jan; 57(1):13-21. PubMed ID: 17919733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.
    Stuart DG
    Hum Mov Sci; 2005; 24(5-6):621-43. PubMed ID: 16337298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats.
    Mori S
    Prog Neurobiol; 1987; 28(2):161-95. PubMed ID: 3544055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the isolated central nervous system; a report on 35 years: more inquisitive than acquisitive.
    Kerkut GA
    Comp Biochem Physiol A Comp Physiol; 1989; 93(1):9-24. PubMed ID: 2472918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion.
    Grillner S; El Manira A
    Physiol Rev; 2020 Jan; 100(1):271-320. PubMed ID: 31512990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load-regulating mechanisms in gait and posture: comparative aspects.
    Duysens J; Clarac F; Cruse H
    Physiol Rev; 2000 Jan; 80(1):83-133. PubMed ID: 10617766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal circuitry of sensorimotor control of locomotion.
    McCrea DA
    J Physiol; 2001 May; 533(Pt 1):41-50. PubMed ID: 11351011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition of pattern generation: the phenomenon of post-scratching locomotion.
    Trejo A; Tapia JA; De la Torre Valdovinos B; Huidobro N; Flores G; Flores-Hernandez J; Flores A; Manjarrez E
    Neuroscience; 2015 Mar; 288():156-66. PubMed ID: 25556832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats.
    Misiaszek JE; de Serres SJ; Stein RB; Jiang W; Pearson KG
    J Neurophysiol; 2000 Apr; 83(4):1941-50. PubMed ID: 10758105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of locomotion in the decerebrate cat.
    Whelan PJ
    Prog Neurobiol; 1996 Aug; 49(5):481-515. PubMed ID: 8895997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability level-setting mechanisms in the pons: their behavioral support in decerebrate, reflex standing and freely moving, intact cats.
    Mori S; Ohta Y; Sakamoto T; Nonaka S
    Brain Dev; 1986; 8(4):408-15. PubMed ID: 3799910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing Neuroscience Research in Africa: Invertebrate Species to the Rescue.
    Balogun WG; Cobham AE; Amin A; Seeni A
    Neuroscience; 2018 Mar; 374():323-325. PubMed ID: 29427653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro CNS preparations: unique approaches to the study of command and pattern generation systems in motor control.
    McClellan AD
    J Neurosci Methods; 1987 Oct; 21(2-4):251-64. PubMed ID: 3316853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fifty Years of CPGs: Two Neuroethological Papers that Shaped the Course of Neuroscience.
    Mulloney B; Smarandache C
    Front Behav Neurosci; 2010; 4():. PubMed ID: 20700502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural circuits for generating rhythmic movements.
    Friesen WO; Stent GS
    Annu Rev Biophys Bioeng; 1978; 7():37-61. PubMed ID: 352244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.