These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21673674)
1. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Giannetti C; Cilento F; Dal Conte S; Coslovich G; Ferrini G; Molegraaf H; Raichle M; Liang R; Eisaki H; Greven M; Damascelli A; van der Marel D; Parmigiani F Nat Commun; 2011 Jun; 2():353. PubMed ID: 21673674 [TBL] [Abstract][Full Text] [Related]
2. Electronic phase diagram of high-temperature copper oxide superconductors. Chatterjee U; Ai D; Zhao J; Rosenkranz S; Kaminski A; Raffy H; Li Z; Kadowaki K; Randeria M; Norman MR; Campuzano JC Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9346-9. PubMed ID: 21606341 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Cilento F; Manzoni G; Sterzi A; Peli S; Ronchi A; Crepaldi A; Boschini F; Cacho C; Chapman R; Springate E; Eisaki H; Greven M; Berciu M; Kemper AF; Damascelli A; Capone M; Giannetti C; Parmigiani F Sci Adv; 2018 Feb; 4(2):eaar1998. PubMed ID: 29507885 [TBL] [Abstract][Full Text] [Related]
4. Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Slezak JA; Lee J; Wang M; McElroy K; Fujita K; Andersen BM; Hirschfeld PJ; Eisaki H; Uchida S; Davis JC Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3203-8. PubMed ID: 18287001 [TBL] [Abstract][Full Text] [Related]
5. Unconventional exciton evolution from the pseudogap to superconducting phases in cuprates. Singh A; Huang HY; Xie JD; Okamoto J; Chen CT; Watanabe T; Fujimori A; Imada M; Huang DJ Nat Commun; 2022 Dec; 13(1):7906. PubMed ID: 36550120 [TBL] [Abstract][Full Text] [Related]
6. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor. Butch NP; Jin K; Kirshenbaum K; Greene RL; Paglione J Proc Natl Acad Sci U S A; 2012 May; 109(22):8440-4. PubMed ID: 22573818 [TBL] [Abstract][Full Text] [Related]
7. Electronic origin of the inhomogeneous pairing interaction in the high-Tc superconductor Bi2Sr2CaCu2O8+delta. Pasupathy AN; Pushp A; Gomes KK; Parker CV; Wen J; Xu Z; Gu G; Ono S; Ando Y; Yazdani A Science; 2008 Apr; 320(5873):196-201. PubMed ID: 18403704 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates. Williams GV; Krämer S; Jung CU; Park MS; Lee SI Solid State Nucl Magn Reson; 2004; 26(3-4):236-45. PubMed ID: 15388188 [TBL] [Abstract][Full Text] [Related]
9. Quantum spin correlations through the superconducting-to-normal phase transition in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta. Wilson SD; Li S; Zhao J; Mu G; Wen HH; Lynn JW; Freeman PG; Regnault LP; Habicht K; Dai P Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15259-63. PubMed ID: 17884981 [TBL] [Abstract][Full Text] [Related]
10. Universal features in the photoemission spectroscopy of high-temperature superconductors. Zhao J; Chatterjee U; Ai D; Hinks DG; Zheng H; Gu GD; Castellan JP; Rosenkranz S; Claus H; Norman MR; Randeria M; Campuzano JC Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17774-7. PubMed ID: 24101464 [TBL] [Abstract][Full Text] [Related]
11. 'True' bosonic coupling strength in strongly correlated superconductors. Iwasawa H; Yoshida Y; Hase I; Shimada K; Namatame H; Taniguchi M; Aiura Y Sci Rep; 2013; 3():1930. PubMed ID: 23722675 [TBL] [Abstract][Full Text] [Related]
12. Signatures of Enhanced Superconducting Phase Coherence in Optimally Doped Bi_{2}Sr_{2}Y_{0.08}Ca_{0.92}Cu_{2}O_{8+δ} Driven by Midinfrared Pulse Excitations. Giusti F; Marciniak A; Randi F; Sparapassi G; Boschini F; Eisaki H; Greven M; Damascelli A; Avella A; Fausti D Phys Rev Lett; 2019 Feb; 122(6):067002. PubMed ID: 30822056 [TBL] [Abstract][Full Text] [Related]
13. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+delta. Yang HB; Rameau JD; Johnson PD; Valla T; Tsvelik A; Gu GD Nature; 2008 Nov; 456(7218):77-80. PubMed ID: 18987738 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates. Guarise M; Dalla Piazza B; Berger H; Giannini E; Schmitt T; Rønnow HM; Sawatzky GA; van den Brink J; Altenfeld D; Eremin I; Grioni M Nat Commun; 2014 Dec; 5():5760. PubMed ID: 25519803 [TBL] [Abstract][Full Text] [Related]
15. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Bok JM; Bae JJ; Choi HY; Varma CM; Zhang W; He J; Zhang Y; Yu L; Zhou XJ Sci Adv; 2016 Mar; 2(3):e1501329. PubMed ID: 26973872 [TBL] [Abstract][Full Text] [Related]
16. Direct Visualization of Ambipolar Mott Transition in Cuprate CuO_{2} Planes. Zhong Y; Fan JQ; Wang RF; Wang S; Zhang X; Zhu Y; Dou Z; Yu XQ; Wang Y; Zhang D; Zhu J; Song CL; Ma XC; Xue QK Phys Rev Lett; 2020 Aug; 125(7):077002. PubMed ID: 32857570 [TBL] [Abstract][Full Text] [Related]
17. Perspectives of disproportionation driven superconductivity in strongly correlated 3d compounds. Moskvin AS J Phys Condens Matter; 2013 Feb; 25(8):085601. PubMed ID: 23363546 [TBL] [Abstract][Full Text] [Related]
19. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi₂Sr(₂-x)La(x)CuO(₆+δ) revealed by ⁶³,⁶⁵Cu-nuclear magnetic resonance in very high magnetic fields. Kawasaki S; Lin C; Kuhns PL; Reyes AP; Zheng GQ Phys Rev Lett; 2010 Sep; 105(13):137002. PubMed ID: 21230801 [TBL] [Abstract][Full Text] [Related]
20. Nodeless High-T_{c} Superconductivity in the Highly Overdoped CuO_{2} Monolayer. Jiang K; Wu X; Hu J; Wang Z Phys Rev Lett; 2018 Nov; 121(22):227002. PubMed ID: 30547640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]