These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 2167368)

  • 61. An analysis of the mechanisms underlying the non-quantal release of acetylcholine at the mouse neuromuscular junction.
    Vyskocil F; Nikolsky E; Edwards C
    Neuroscience; 1983 Jun; 9(2):429-35. PubMed ID: 6308511
    [No Abstract]   [Full Text] [Related]  

  • 62. [Calcium modulation of the release kinetics of the acetylcholine quanta generating multiquantal postsynaptic response].
    Khuzakhmetova VF; Fatikhov NF; Bukharaeva EA; Nikol'skiĭ EE
    Ross Fiziol Zh Im I M Sechenova; 2011 Oct; 97(10):1147-56. PubMed ID: 22292279
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of N-acetylaspartylglutamate (NAAG) on non-quantal and spontaneous quantal release of acetylcholine at the neuromuscular synapse of rat.
    Malomouzh AI; Nikolsky EE; Lieberman EM; Sherman JA; Lubischer JL; Grossfeld RM; Urazaev AKh
    J Neurochem; 2005 Jul; 94(1):257-67. PubMed ID: 15953368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Three types of transmitter release from embryonic neurons.
    Poo MM; Sun YA; Young SH
    J Physiol (Paris); 1985; 80(4):283-9. PubMed ID: 3009797
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction.
    Kita H; Van Der Kloot W
    J Physiol; 1976 Jul; 259(1):177-98. PubMed ID: 182959
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Frequency and amplitude gradients of spontaneous release along the length of the frog neuromuscular junction.
    Robitaille R; Tremblay JP
    Synapse; 1989; 3(4):291-307. PubMed ID: 2568018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lithium ions and the release of transmitter at the frog neuromuscular junction.
    Crawford AC
    J Physiol; 1975 Mar; 246(1):109-42. PubMed ID: 237119
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species.
    Tsentsevitsky A; Nikolsky E; Giniatullin R; Bukharaeva E
    Neuroscience; 2011 Aug; 189():93-9. PubMed ID: 21627983
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phenytoin reduces frequency potentiation of synaptic potentials at the frog neuromuscular junction.
    Selzer ME; David G; Yaari Y
    Brain Res; 1984 Jun; 304(1):149-52. PubMed ID: 6744034
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of testosterone on synaptic efficacy at neuromuscular junctions in a sexually dimorphic muscle of male frogs.
    Nagaya N; Herrera AA
    J Physiol; 1995 Feb; 483 ( Pt 1)(Pt 1):141-53. PubMed ID: 7776228
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Relation between temperature and processes of spontaneous quantum and non-quantum mediator release from motor nerve endings of the mouse].
    Nikol'skiĭ EE; Voronin VA
    Neirofiziologiia; 1986; 18(3):361-7. PubMed ID: 3016571
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Localizing quantal currents along frog neuromuscular junctions.
    Van der Kloot W; Naves LA
    J Physiol; 1996 Nov; 497 ( Pt 1)(Pt 1):189-98. PubMed ID: 8951721
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acceleration by stannous ion of the evoked release of transmitter from motor nerve endings in the frog.
    Hattori T; Maehashi H
    Brain Res; 1988 Nov; 473(1):157-60. PubMed ID: 3264745
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Constraints on the interpretation of nonquantal acetylcholine release from frog neuromuscular junctions.
    Meriney SD; Young SH; Grinnell AD
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2098-102. PubMed ID: 2784566
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of morphology and physiology of synapses formed at ectopic and original endplate sites in frog muscle.
    Ding R
    Brain Res; 1982 Dec; 253(1-2):57-63. PubMed ID: 6295560
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice.
    Miteva AS; Gaydukov AE; Shestopalov VI; Balezina OP
    Purinergic Signal; 2018 Dec; 14(4):459-469. PubMed ID: 30362043
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interaction of glutamate- and adenosine-induced decrease of acetylcholine quantal release at frog neuromuscular junction.
    Adámek S; Shakirzyanova AV; Malomouzh AI; Naumenko NV; Vyskočil F
    Physiol Res; 2010; 59(5):803-810. PubMed ID: 21142401
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neuromuscular transmission in amyotrophic lateral sclerosis.
    Maselli RA; Wollman RL; Leung C; Distad B; Palombi S; Richman DP; Salazar-Grueso EF; Roos RP
    Muscle Nerve; 1993 Nov; 16(11):1193-203. PubMed ID: 8105377
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intracellular magnesium does not antagonize calcium-dependent acetylcholine secretion.
    Kharasch ED; Mellow AM; Silinsky EM
    J Physiol; 1981 May; 314():255-63. PubMed ID: 6273531
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Clumping and oscillations in evoked transmitter release at the frog neuromuscular junction.
    Meiri H; Rahamimoff R
    J Physiol; 1978 May; 278():513-23. PubMed ID: 209172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.