These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21673750)

  • 21. A simple readout electronics for automatic power controlled self-mixing laser diode systems.
    Cattini S; Rovati L
    Rev Sci Instrum; 2008 Aug; 79(8):084704. PubMed ID: 19044373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient calculation of time- and frequency-resolved four-wave-mixing signals.
    Gelin MF; Egorova D; Domcke W
    Acc Chem Res; 2009 Sep; 42(9):1290-8. PubMed ID: 19449854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rewritable optical-disk fabrication with an optical recording material made of naphthalocyanine and polythiophene.
    Tomiyama T; Watanabe I; Kuwano A; Habiro M; Takane N; Yamada M
    Appl Opt; 1995 Dec; 34(35):8201-8. PubMed ID: 21068936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric.
    Shikinami Y; Kawabe Y; Yasukawa K; Tsuta K; Kotani Y; Abumi K
    Spine J; 2010 Feb; 10(2):141-52. PubMed ID: 19944651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superresolution effects in weak turbulence.
    Yang CC; Plonus MA
    Appl Opt; 1993 Dec; 32(36):7528-31. PubMed ID: 20861972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Anatomical background of low back pain: variability and degeneration of the lumbar spinal canal and intervertebral disc].
    van Roy P; Barbaix E; Clarijs JP; Mense S
    Schmerz; 2001 Dec; 15(6):418-24. PubMed ID: 11793145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved superresolution in coherent optical systems.
    Shemer A; Zalevsky Z; Mendlovic D; Marom E; Garcia J; Martinez PG
    Appl Opt; 2001 Sep; 40(26):4688-96. PubMed ID: 18360510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of superresolution in magneto-optic data storage devices.
    Milster TD; Curtis CH
    Appl Opt; 1992 Oct; 31(29):6272-9. PubMed ID: 20733840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superresolution for digital versatile discs (DVD's).
    Grochmalicki J; Pike R
    Appl Opt; 2000 Dec; 39(34):6341-9. PubMed ID: 18354644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical analysis of a thermally induced superresolution optical disk with different readout optics.
    Wu Y; Chong CT
    Appl Opt; 1997 Sep; 36(26):6668-77. PubMed ID: 18259530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.
    Cilingiroglu TB; Uyar A; Tuysuzoglu A; Karl WC; Konrad J; Goldberg BB; Ünlü MS
    Opt Express; 2015 Jun; 23(11):15072-87. PubMed ID: 26072864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial aperture imaging system based on sparse point spread holograms and nonlinear cross-correlations.
    Bulbul A; Rosen J
    Sci Rep; 2020 Dec; 10(1):21983. PubMed ID: 33319801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced readout signal of superresolution near-field structure disks by control of the size and distribution of metal nanoclusters.
    Yih JN; Hsu WC; Tsai SY; Chen SJ
    Appl Opt; 2005 May; 44(15):3001-5. PubMed ID: 15929290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of partial-response maximum-likelihood detection for phase-change optical data storage.
    Peng C; Mansuripur M
    Appl Opt; 1999 Jul; 38(20):4394-405. PubMed ID: 18323926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulse-read on erasable thermal phase-change superresolution disks.
    Liu JR; Liu PY; Tang NY; Shieh HP
    Appl Opt; 1998 Dec; 37(35):8187-94. PubMed ID: 18301637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theories for the design of diffractive superresolution elements and limits of optical superresolution.
    Liu H; Yan Y; Tan Q; Jin G
    J Opt Soc Am A Opt Image Sci Vis; 2002 Nov; 19(11):2185-93. PubMed ID: 12413119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superresolution optical disk with a thermoreversible organic thin film.
    Chen Q; Tominaga J; Men L; Fukaya T; Atoda N; Fuji H
    Opt Lett; 2001 Mar; 26(5):274-6. PubMed ID: 18040299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamental limits of optical superresolution.
    Sales TR; Morris GM
    Opt Lett; 1997 May; 22(9):582-4. PubMed ID: 18185597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast readout method for multidimensional optical data storage using interferometry-aided reflectance spectroscopy.
    Ge C; Zhang L; Sun J; Wang Z
    Opt Express; 2021 Oct; 29(22):36608-36615. PubMed ID: 34809068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.