BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21673815)

  • 1. Fibro-vascular coupling in the control of cochlear blood flow.
    Dai M; Shi X
    PLoS One; 2011; 6(6):e20652. PubMed ID: 21673815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS.
    Dai M; Yang Y; Shi X
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1248-54. PubMed ID: 21856924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter.
    Wu T; Dai M; Shi XR; Jiang ZG; Nuttall AL
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H69-78. PubMed ID: 21460192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling.
    Scherer EQ; Yang J; Canis M; Reimann K; Ivanov K; Diehl CD; Backx PH; Wier WG; Strieth S; Wangemann P; Voigtlaender-Bolz J; Lidington D; Bolz SS
    Stroke; 2010 Nov; 41(11):2618-24. PubMed ID: 20930159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of frequency and intensity of sound on cochlear blood flow.
    Okamoto A; Hasegawa M; Tamura T; Homma T; Komatsuzaki A
    Acta Otolaryngol; 1992; 112(1):59-64. PubMed ID: 1575038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of voltage-gated potassium channel Kv3.1b subunit in the cochlea.
    So E; Kikuchi T; Ishimaru K; Miyabe Y; Kobayashi T
    Neuroreport; 2001 Aug; 12(12):2761-5. PubMed ID: 11522962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a medial K+ recycling pathway from inner hair cells.
    Spicer SS; Schulte BA
    Hear Res; 1998 Apr; 118(1-2):1-12. PubMed ID: 9606057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of Na+, K(+)-ATPase, Ca(++)-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear.
    Ichimiya I; Adams JC; Kimura RS
    Acta Otolaryngol; 1994 Mar; 114(2):167-76. PubMed ID: 8203199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical and Immunohistochemical Properties of Cochlear Fibrocytes in 3D Cell Culture and in the Excised Spiral Ligament of Mice.
    Osborn A; Caruana D; Furness DN; Evans MG
    J Assoc Res Otolaryngol; 2022 Apr; 23(2):183-193. PubMed ID: 35041102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strial circulation impairment due to acoustic trauma.
    Yamane H; Nakai Y; Konishi K; Sakamoto H; Matsuda Y; Iguchi H
    Acta Otolaryngol; 1991; 111(1):85-93. PubMed ID: 2014760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea.
    Kelly JJ; Forge A; Jagger DJ
    Neuroscience; 2011 Apr; 180():360-9. PubMed ID: 21320575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency.
    Spicer SS; Schulte BA
    Hear Res; 1996 Oct; 100(1-2):80-100. PubMed ID: 8922982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cochlear pericytes.
    Shi X; Han W; Yamamoto H; Tang W; Lin X; Xiu R; Trune DR; Nuttall AL
    Microcirculation; 2008 Aug; 15(6):515-29. PubMed ID: 19086261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea.
    Suzuki T; Matsunami T; Hisa Y; Takata K; Takamatsu T; Oyamada M
    Histochem Cell Biol; 2009 Jan; 131(1):89-102. PubMed ID: 18787834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of inner ear fibrocytes according to their ion transport related activity.
    Spicer SS; Schulte BA
    Hear Res; 1991 Nov; 56(1-2):53-64. PubMed ID: 1663106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression patterns of ion transport enzymes in spiral ligament fibrocytes change in relation to strial atrophy in the aged gerbil cochlea.
    Spicer SS; Gratton MA; Schulte BA
    Hear Res; 1997 Sep; 111(1-2):93-102. PubMed ID: 9307315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity of red blood cell flow in capillaries of the guinea pig cochlea.
    Nuttall AL
    Hear Res; 1987; 27(2):121-8. PubMed ID: 2440843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling.
    Kelly JJ; Forge A; Jagger DJ
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):473-84. PubMed ID: 22476723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of CO2 and apnea on cochlear and middle ear blood flow in guinea pigs].
    Yamamoto J; Nakashima T; Yanagita N
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):36-44. PubMed ID: 9038074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of loud sound exposure on the cochlear blood flow.
    Okamoto A; Tamura T; Yokoyama K; Kobayashi N; Hasegawa M
    Acta Otolaryngol; 1990; 109(5-6):378-82. PubMed ID: 2141752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.