These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21673864)

  • 1. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.
    Volz EM; Miller JC; Galvani A; Ancel Meyers L
    PLoS Comput Biol; 2011 Jun; 7(6):e1002042. PubMed ID: 21673864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Household members do not contact each other at random: implications for infectious disease modelling.
    Goeyvaerts N; Santermans E; Potter G; Torneri A; Van Kerckhove K; Willem L; Aerts M; Beutels P; Hens N
    Proc Biol Sci; 2018 Dec; 285(1893):20182201. PubMed ID: 30963910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using network properties to predict disease dynamics on human contact networks.
    Ames GM; George DB; Hampson CP; Kanarek AR; McBee CD; Lockwood DR; Achter JD; Webb CT
    Proc Biol Sci; 2011 Dec; 278(1724):3544-50. PubMed ID: 21525056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of epidemics: when contact repetition and clustering should be included.
    Smieszek T; Fiebig L; Scholz RW
    Theor Biol Med Model; 2009 Jun; 6():11. PubMed ID: 19563624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic thresholds in dynamic contact networks.
    Volz E; Meyers LA
    J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.
    Carnegie NB
    Stat Med; 2018 Jan; 37(2):236-248. PubMed ID: 28192859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong spatial embedding of social networks generates nonstandard epidemic dynamics independent of degree distribution and clustering.
    Haw DJ; Pung R; Read JM; Riley S
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23636-23642. PubMed ID: 32900923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure.
    Ball F; Sirl D
    J Math Biol; 2018 Jan; 76(1-2):483-530. PubMed ID: 28634747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models.
    Rolls DA; Wang P; McBryde E; Pattison P; Robins G
    PLoS One; 2015; 10(11):e0142181. PubMed ID: 26555701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spread of infectious disease through clustered populations.
    Miller JC
    J R Soc Interface; 2009 Dec; 6(41):1121-34. PubMed ID: 19324673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective degree household network disease model.
    Ma J; van den Driessche P; Willeboordse FH
    J Math Biol; 2013 Jan; 66(1-2):75-94. PubMed ID: 22252505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution epidemic simulation using within-host infection and contact data.
    Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA
    BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?
    Mastrandrea R; Barrat A
    PLoS Comput Biol; 2016 Jun; 12(6):e1005002. PubMed ID: 27341027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru.
    Grijalva CG; Goeyvaerts N; Verastegui H; Edwards KM; Gil AI; Lanata CF; Hens N;
    PLoS One; 2015; 10(3):e0118457. PubMed ID: 25734772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease contact tracing in random and clustered networks.
    Kiss IZ; Green DM; Kao RR
    Proc Biol Sci; 2005 Jul; 272(1570):1407-14. PubMed ID: 16006334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.