These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Fragasso A; de Vries HW; Andersson J; van der Sluis EO; van der Giessen E; Dahlin A; Onck PR; Dekker C Nat Commun; 2021 Mar; 12(1):2010. PubMed ID: 33790297 [TBL] [Abstract][Full Text] [Related]
27. Characterisation of the passive permeability barrier of nuclear pore complexes. Mohr D; Frey S; Fischer T; Güttler T; Görlich D EMBO J; 2009 Sep; 28(17):2541-53. PubMed ID: 19680228 [TBL] [Abstract][Full Text] [Related]
28. The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. Zeitler B; Weis K J Cell Biol; 2004 Nov; 167(4):583-90. PubMed ID: 15557115 [TBL] [Abstract][Full Text] [Related]
29. Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker's Yeast. Ando D; Gopinathan A PLoS One; 2017; 12(1):e0169455. PubMed ID: 28068389 [TBL] [Abstract][Full Text] [Related]
30. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. Tu LC; Fu G; Zilman A; Musser SM EMBO J; 2013 Dec; 32(24):3220-30. PubMed ID: 24213245 [TBL] [Abstract][Full Text] [Related]
31. Characterizing Binding Interactions That Are Essential for Selective Transport through the Nuclear Pore Complex. Lennon KM; Soheilypour M; Peyro M; Wakefield DL; Choo GE; Mofrad MRK; Jovanovic-Talisman T Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639238 [TBL] [Abstract][Full Text] [Related]
32. The mechanism of nucleocytoplasmic transport through the nuclear pore complex. Tetenbaum-Novatt J; Rout MP Cold Spring Harb Symp Quant Biol; 2010; 75():567-84. PubMed ID: 21447814 [TBL] [Abstract][Full Text] [Related]
34. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Lowe AR; Siegel JJ; Kalab P; Siu M; Weis K; Liphardt JT Nature; 2010 Sep; 467(7315):600-3. PubMed ID: 20811366 [TBL] [Abstract][Full Text] [Related]
35. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. Ribbeck K; Görlich D EMBO J; 2002 Jun; 21(11):2664-71. PubMed ID: 12032079 [TBL] [Abstract][Full Text] [Related]
36. The Role of Cohesiveness in the Permeability of the Spatial Assemblies of FG Nucleoporins. Gu C; Vovk A; Zheng T; Coalson RD; Zilman A Biophys J; 2019 Apr; 116(7):1204-1215. PubMed ID: 30902367 [TBL] [Abstract][Full Text] [Related]
37. A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption of nuclear transport. Barrientos ECR; Otto TA; Mouton SN; Steen A; Veenhoff LM Nucleus; 2023 Dec; 14(1):2240139. PubMed ID: 37498221 [TBL] [Abstract][Full Text] [Related]
38. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Fribourg S; Braun IC; Izaurralde E; Conti E Mol Cell; 2001 Sep; 8(3):645-56. PubMed ID: 11583626 [TBL] [Abstract][Full Text] [Related]
39. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Kapinos LE; Schoch RL; Wagner RS; Schleicher KD; Lim RY Biophys J; 2014 Apr; 106(8):1751-62. PubMed ID: 24739174 [TBL] [Abstract][Full Text] [Related]