BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21673969)

  • 1. Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex.
    Cai W; Leung HC
    PLoS One; 2011; 6(6):e20840. PubMed ID: 21673969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.
    Duann JR; Ide JS; Luo X; Li CS
    J Neurosci; 2009 Aug; 29(32):10171-9. PubMed ID: 19675251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study.
    Sebastian A; Jung P; Neuhoff J; Wibral M; Fox PT; Lieb K; Fries P; Eickhoff SB; Tüscher O; Mobascher A
    Brain Struct Funct; 2016 Apr; 221(3):1635-51. PubMed ID: 25637472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Organization for Response Inhibition in the Right Inferior Frontal Cortex of Individual Human Brains.
    Suda A; Osada T; Ogawa A; Tanaka M; Kamagata K; Aoki S; Hattori N; Konishi S
    Cereb Cortex; 2020 Nov; 30(12):6325-6335. PubMed ID: 32666077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets.
    Cai W; Ryali S; Chen T; Li CS; Menon V
    J Neurosci; 2014 Oct; 34(44):14652-67. PubMed ID: 25355218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct neural processes support post-success and post-error slowing in the stop signal task.
    Zhang Y; Ide JS; Zhang S; Hu S; Valchev NS; Tang X; Li CR
    Neuroscience; 2017 Aug; 357():273-284. PubMed ID: 28627420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical activity during manual response inhibition guided by color and orientation cues.
    Cai W; Leung HC
    Brain Res; 2009 Mar; 1261():20-8. PubMed ID: 19401178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the right inferior frontal gyrus: inhibition and attentional control.
    Hampshire A; Chamberlain SR; Monti MM; Duncan J; Owen AM
    Neuroimage; 2010 Apr; 50(3):1313-9. PubMed ID: 20056157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network.
    Paschke LM; Walter H; Steimke R; Ludwig VU; Gaschler R; Schubert T; Stelzel C
    Neuroimage; 2015 May; 111():549-61. PubMed ID: 25731995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of High-Definition and Conventional tDCS on Response Inhibition.
    Hogeveen J; Grafman J; Aboseria M; David A; Bikson M; Hauner KK
    Brain Stimul; 2016; 9(5):720-729. PubMed ID: 27198577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition.
    Penfold C; Vizueta N; Townsend JD; Bookheimer SY; Altshuler LL
    Psychiatry Res; 2015 Mar; 231(3):202-9. PubMed ID: 25555505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network.
    Osada T; Ohta S; Ogawa A; Tanaka M; Suda A; Kamagata K; Hori M; Aoki S; Shimo Y; Hattori N; Shimizu T; Enomoto H; Hanajima R; Ugawa Y; Konishi S
    J Neurosci; 2019 Mar; 39(13):2509-2521. PubMed ID: 30692225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement.
    Bartoli E; Aron AR; Tandon N
    Hum Brain Mapp; 2018 Jan; 39(1):189-203. PubMed ID: 29024235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Centrality Reveals Dissociable Brain Activity during Response Inhibition in Human Right Ventral Part of Inferior Frontal Cortex.
    Fujimoto U; Ogawa A; Osada T; Tanaka M; Suda A; Hattori N; Kamagata K; Aoki S; Konishi S
    Neuroscience; 2020 May; 433():163-173. PubMed ID: 32194229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition and impulsivity: behavioral and neural basis of response control.
    Bari A; Robbins TW
    Prog Neurobiol; 2013 Sep; 108():44-79. PubMed ID: 23856628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses.
    Swann N; Tandon N; Canolty R; Ellmore TM; McEvoy LK; Dreyer S; DiSano M; Aron AR
    J Neurosci; 2009 Oct; 29(40):12675-85. PubMed ID: 19812342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stop-signal task difficulty and the right inferior frontal gyrus.
    Hughes ME; Johnston PJ; Fulham WR; Budd TW; Michie PT
    Behav Brain Res; 2013 Nov; 256():205-13. PubMed ID: 23973765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.