BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21674075)

  • 1. Formation of linear supramolecular polymers that is based on host-guest assembly in water.
    Xu Y; Guo M; Li X; Malkovskiy A; Wesdemiotis C; Pang Y
    Chem Commun (Camb); 2011 Aug; 47(31):8883-5. PubMed ID: 21674075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of single-chain polymer nanoparticles in water through host-guest interactions.
    Appel EA; Dyson J; del Barrio J; Walsh Z; Scherman OA
    Angew Chem Int Ed Engl; 2012 Apr; 51(17):4185-9. PubMed ID: 22422662
    [No Abstract]   [Full Text] [Related]  

  • 3. Supramolecular dye laser with cucurbit[7]uril in water.
    Mohanty J; Pal H; Ray AK; Kumar S; Nau WM
    Chemphyschem; 2007 Jan; 8(1):54-6. PubMed ID: 17171726
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantification of surface functional groups on polymer microspheres by supramolecular host-guest interactions.
    Hennig A; Hoffmann A; Borcherding H; Thiele T; Schedler U; Resch-Genger U
    Chem Commun (Camb); 2011 Jul; 47(27):7842-4. PubMed ID: 21647510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril.
    Coulston RJ; Jones ST; Lee TC; Appel EA; Scherman OA
    Chem Commun (Camb); 2011 Jan; 47(1):164-6. PubMed ID: 20842297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence anisotropy as a tool to study guest-cucurbit[n]uril-protein ternary supramolecular interactions.
    Scholtbach K; Venegas Í; Bohne C; Fuentealba D
    Photochem Photobiol Sci; 2015 Apr; 14(4):842-52. PubMed ID: 25683690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "On-demand" control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host-guest complexes.
    Rauwald U; del Barrio J; Loh XJ; Scherman OA
    Chem Commun (Camb); 2011 Jun; 47(21):6000-2. PubMed ID: 21487593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular chemistry in water.
    Oshovsky GV; Reinhoudt DN; Verboom W
    Angew Chem Int Ed Engl; 2007; 46(14):2366-93. PubMed ID: 17370285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-guest and acyclic cucurbit[n]uril conjugated polymers for the controlled release of anti-tumor drugs.
    Jiang S; Lan S; Mao D; Yang X; Shi K; Ma D
    Chem Commun (Camb); 2018 Aug; 54(68):9486-9489. PubMed ID: 30087959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching properties of a spiropyran-cucurbit[7]uril supramolecular assembly: usefulness of the anchor approach.
    Nilsson JR; Parente Carvalho C; Li S; Da Silva JP; Andréasson J; Pischel U
    Chemphyschem; 2012 Nov; 13(16):3691-9. PubMed ID: 22927227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Regulated Molecular Trafficking in a Synthetic Water-Soluble Host.
    Del Barrio J; Ryan ST; Jambrina PG; Rosta E; Scherman OA
    J Am Chem Soc; 2016 May; 138(18):5745-8. PubMed ID: 26876686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the Nucleated Self-Assembly of Tri-β(3) -Peptides Using Cucurbit[n]urils.
    Satav T; Korevaar P; de Greef TF; Huskens J; Jonkheijm P
    Chemistry; 2016 Aug; 22(36):12675-9. PubMed ID: 27434777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation.
    Jones ST; Zayed JM; Scherman OA
    Nanoscale; 2013 Jun; 5(12):5299-302. PubMed ID: 23685700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Self-Assembly of Poly-Pseudorotaxanes into Artificial Microtubules.
    Hwang W; Yoo J; Hwang IC; Lee J; Ko YH; Kim HW; Kim Y; Lee Y; Hur MY; Park KM; Seo J; Baek K; Kim K
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3460-3464. PubMed ID: 31863556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Stimuli-Responsive Supramolecular Polymers Based on Noncovalent and Dynamic Covalent Bonds.
    Hatai J; Hirschhäuser C; Niemeyer J; Schmuck C
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2107-2115. PubMed ID: 31859472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotaxane formation by cucurbit[7]uril in water and DMSO solutions.
    Senler S; Cheng B; Kaifer AE
    Org Lett; 2014 Nov; 16(22):5834-7. PubMed ID: 25383988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Guest-Host Interactions for the Preparation of Biomedical Materials.
    Rodell CB; Mealy JE; Burdick JA
    Bioconjug Chem; 2015 Dec; 26(12):2279-89. PubMed ID: 26439898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors.
    Kim BS; Ko YH; Kim Y; Lee HJ; Selvapalam N; Lee HC; Kim K
    Chem Commun (Camb); 2008 Jun; (24):2756-8. PubMed ID: 18688300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cucurbit[7]uril host-guest complexes and [2]pseudorotaxanes with N-methylpiperidinium, N-methylpyrrolidinium, and N-methylmorpholinium cations in aqueous solution.
    Gamal-Eldin MA; Macartney DH
    Org Biomol Chem; 2013 Feb; 11(7):1234-41. PubMed ID: 23314170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A supramolecular route towards core-shell polymeric microspheres in water via cucurbit[8]uril complexation.
    Lan Y; Loh XJ; Geng J; Walsh Z; Scherman OA
    Chem Commun (Camb); 2012 Sep; 48(70):8757-9. PubMed ID: 22832698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.