These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21674329)

  • 1. Extending the scope of site-specific cysteine bioconjugation by appending a prelabeled cysteine tag to proteins using protein trans-splicing.
    Dhar T; Kurpiers T; Mootz HD
    Methods Mol Biol; 2011; 751():131-42. PubMed ID: 21674329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein.
    Kurpiers T; Mootz HD
    Chembiochem; 2008 Sep; 9(14):2317-25. PubMed ID: 18756552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-tag labeling of proteins using fully recombinant split inteins.
    Bachmann AL; Matern JC; Schütz V; Mootz HD
    Methods Mol Biol; 2015; 1266():145-59. PubMed ID: 25560073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein.
    Shingledecker K; Jiang Sq; Paulus H
    Arch Biochem Biophys; 2000 Mar; 375(1):138-44. PubMed ID: 10683259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal chemical protein labeling using the naturally split GOS-TerL intein.
    Bachmann AL; Mootz HD
    J Pept Sci; 2017 Jul; 23(7-8):624-630. PubMed ID: 28332258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.
    Garbe D; Thiel IV; Mootz HD
    J Pept Sci; 2010 Oct; 16(10):575-81. PubMed ID: 20862725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mesophilic cysteine-less split intein for protein
    Bhagawati M; Terhorst TME; Füsser F; Hoffmann S; Pasch T; Pietrokovski S; Mootz HD
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22164-22172. PubMed ID: 31611397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligation of synthetic peptides to proteins using semisynthetic protein trans-splicing.
    Matern JC; Bachmann AL; Thiel IV; Volkmann G; Wasmuth A; Binschik J; Mootz HD
    Methods Mol Biol; 2015; 1266():129-43. PubMed ID: 25560072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semisynthesis of proteins using split inteins.
    Ludwig C; Schwarzer D; Zettler J; Garbe D; Janning P; Czeslik C; Mootz HD
    Methods Enzymol; 2009; 462():77-96. PubMed ID: 19632470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein.
    Southworth MW; Amaya K; Evans TC; Xu MQ; Perler FB
    Biotechniques; 1999 Jul; 27(1):110-4, 116, 118-20. PubMed ID: 10407673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific two-color protein labeling for FRET studies using split inteins.
    Yang JY; Yang WY
    J Am Chem Soc; 2009 Aug; 131(33):11644-5. PubMed ID: 19645470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression.
    Nichols NM; Benner JS; Martin DD; Evans TC
    Biochemistry; 2003 May; 42(18):5301-11. PubMed ID: 12731871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific protein labeling by intein-mediated protein ligation.
    Ghosh I; Considine N; Maunus E; Sun L; Zhang A; Buswell J; Evans TC; Xu MQ
    Methods Mol Biol; 2011; 705():87-107. PubMed ID: 21125382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a tandem protein trans-splicing system based on native and engineered split inteins.
    Shi J; Muir TW
    J Am Chem Soc; 2005 May; 127(17):6198-206. PubMed ID: 15853324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein trans-splicing and its use in structural biology: opportunities and limitations.
    Volkmann G; Iwaï H
    Mol Biosyst; 2010 Nov; 6(11):2110-21. PubMed ID: 20820635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-free non-canonical C-intein for versatile protein C-terminal labeling through trans-splicing.
    Dai X; Xun Q; Liu XQ; Meng Q
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8151-61. PubMed ID: 26227407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage and purification of intein fusion proteins using the Streptococcus gordonii spex system.
    Myscofski DM; Dutton EK; Cantor E; Zhang A; Hruby DE
    Prep Biochem Biotechnol; 2001 Aug; 31(3):275-90. PubMed ID: 11513092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing.
    Sonntag T; Mootz HD
    Mol Biosyst; 2011 Jun; 7(6):2031-9. PubMed ID: 21487580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.