BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21674347)

  • 1. DNA detection using functionalized conducting polymers.
    Travas-Sejdic J; Peng H; Yu HH; Luo SC
    Methods Mol Biol; 2011; 751():437-52. PubMed ID: 21674347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces.
    Luo SC; Xie H; Chen N; Yu HH
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1414-9. PubMed ID: 20355943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes.
    Rozlosnik N
    Anal Bioanal Chem; 2009 Oct; 395(3):637-45. PubMed ID: 19644677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel label-free DNA sensors based on poly(3,4-ethylenedioxythiophene).
    Krishnamoorthy K; Gokhale RS; Contractor AQ; Kumar A
    Chem Commun (Camb); 2004 Apr; (7):820-1. PubMed ID: 15045080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.
    Wang G; Han R; Su X; Li Y; Xu G; Luo X
    Biosens Bioelectron; 2017 Jun; 92():396-401. PubMed ID: 27829555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers.
    Pedro GC; Gorza FDS; da Silva RJ; do Nascimento KTO; Medina-Llamas JC; Chávez-Guajardo AE; Alcaraz-Espinoza JJ; de Melo CP
    Anal Chim Acta; 2019 Jan; 1047():214-224. PubMed ID: 30567653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors.
    Ayranci R; Demirkol DO; Ak M; Timur S
    Sensors (Basel); 2015 Jan; 15(1):1389-403. PubMed ID: 25591169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-controlled application of electric potential on a conducting polymer "canvas".
    Ishiguro Y; Inagi S; Fuchigami T
    J Am Chem Soc; 2012 Mar; 134(9):4034-6. PubMed ID: 22353050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conducting polymers for electrochemical DNA sensing.
    Peng H; Zhang L; Soeller C; Travas-Sejdic J
    Biomaterials; 2009 Apr; 30(11):2132-48. PubMed ID: 19147223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly.
    Dai T; Jiang X; Hua S; Wang X; Lu Y
    Chem Commun (Camb); 2008 Sep; (36):4279-81. PubMed ID: 18802543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.
    Zeng X; Qu K; Rehman A
    Acc Chem Res; 2016 Sep; 49(9):1624-33. PubMed ID: 27524389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing.
    Aydemir N; Chan E; Baek P; Barker D; Williams DE; Travas-Sejdic J
    Biosens Bioelectron; 2017 Nov; 97():128-135. PubMed ID: 28582708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance conducting polymer nanofiber biosensors for detection of biomolecules.
    Yang G; Kampstra KL; Abidian MR
    Adv Mater; 2014 Aug; 26(29):4954-60. PubMed ID: 24719293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene.
    Kerr-Phillips TE; Aydemir N; Chan EWC; Barker D; Malmström J; Plesse C; Travas-Sejdic J
    Biosens Bioelectron; 2018 Feb; 100():549-555. PubMed ID: 29017070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers.
    Kannan B; Williams DE; Booth MA; Travas-Sejdic J
    Anal Chem; 2011 May; 83(9):3415-21. PubMed ID: 21466209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes.
    Galán T; Prieto-Simón B; Alvira M; Eritja R; Götz G; Bäuerle P; Samitier J
    Biosens Bioelectron; 2015 Dec; 74():751-6. PubMed ID: 26210592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.
    Truong TN; Tran DL; Vu TH; Tran VH; Duong TQ; Dinh QK; Tsukahara T; Lee YH; Kim JS
    Talanta; 2010 Jan; 80(3):1164-9. PubMed ID: 20006069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.
    Lee HJ; Lee J; Park SM
    J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template.
    Hatano T; Bae AH; Takeuchi M; Fujita N; Kaneko K; Ihara H; Takafuji M; Shinkai S
    Angew Chem Int Ed Engl; 2004 Jan; 43(4):465-9. PubMed ID: 14735536
    [No Abstract]   [Full Text] [Related]  

  • 20. Bioaffinity sensing using biologically functionalized conducting-polymer nanowire.
    Ramanathan K; Bangar MA; Yun M; Chen W; Myung NV; Mulchandani A
    J Am Chem Soc; 2005 Jan; 127(2):496-7. PubMed ID: 15643853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.