BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 21674378)

  • 1. DNA molecular handles for single-molecule protein-folding studies by optical tweezers.
    Cecconi C; Shank EA; Marqusee S; Bustamante C
    Methods Mol Biol; 2011; 749():255-71. PubMed ID: 21674378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers.
    Cecconi C; Shank EA; Dahlquist FW; Marqusee S; Bustamante C
    Eur Biophys J; 2008 Jul; 37(6):729-38. PubMed ID: 18183383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule studies of DNA binding proteins using optical tweezers.
    Kimura Y; Bianco PR
    Analyst; 2006 Aug; 131(8):868-74. PubMed ID: 17028717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein unfolding and refolding under force: methodologies for nanomechanics.
    Samorì B; Zuccheri G; Baschieri R
    Chemphyschem; 2005 Jan; 6(1):29-34. PubMed ID: 15688640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tethering Complex Proteins and Protein Complexes for Optical Tweezers Experiments.
    Maciuba K; Kaiser CM
    Methods Mol Biol; 2022; 2478():427-460. PubMed ID: 36063330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers.
    Hao Y; Canavan C; Taylor SS; Maillard RA
    Sci Rep; 2017 Sep; 7(1):10843. PubMed ID: 28883488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force measurements of the disruption of the nascent polypeptide chain from the ribosome by optical tweezers.
    Katranidis A; Grange W; Schlesinger R; Choli-Papadopoulou T; Brüggemann D; Hegner M; Büldt G
    FEBS Lett; 2011 Jun; 585(12):1859-63. PubMed ID: 21549117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex folding network of single calmodulin molecules.
    Stigler J; Ziegler F; Gieseke A; Gebhardt JC; Rief M
    Science; 2011 Oct; 334(6055):512-6. PubMed ID: 22034433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.
    Jiao J; Rebane AA; Ma L; Zhang Y
    Methods Mol Biol; 2017; 1486():357-390. PubMed ID: 27844436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing and manipulating individual protein molecules.
    Kellermayer MS
    Physiol Meas; 2005 Aug; 26(4):R119-53. PubMed ID: 15886428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions.
    Gross P; Farge G; Peterman EJ; Wuite GJ
    Methods Enzymol; 2010; 475():427-53. PubMed ID: 20627167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy surfaces from single-molecule force spectroscopy.
    Hummer G; Szabo A
    Acc Chem Res; 2005 Jul; 38(7):504-13. PubMed ID: 16028884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of chaperone-induced changes in a protein folding pathway.
    Bechtluft P; van Leeuwen RG; Tyreman M; Tomkiewicz D; Nouwen N; Tepper HL; Driessen AJ; Tans SJ
    Science; 2007 Nov; 318(5855):1458-61. PubMed ID: 18048690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretching single polysaccharides and proteins using atomic force microscopy.
    Marszalek PE; Dufrêne YF
    Chem Soc Rev; 2012 May; 41(9):3523-34. PubMed ID: 22331199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and mechanical multistate folding of ribonuclease H.
    Schmitt TJ; Clark JE; Knotts TA
    J Chem Phys; 2009 Dec; 131(23):235101. PubMed ID: 20025349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretching single molecules into novel conformations using the atomic force microscope.
    Fisher TE; Marszalek PE; Fernandez JM
    Nat Struct Biol; 2000 Sep; 7(9):719-24. PubMed ID: 10966637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution dual-trap optical tweezers with differential detection: an introduction.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.top60. PubMed ID: 20147062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology, one molecule at a time.
    Kapanidis AN; Strick T
    Trends Biochem Sci; 2009 May; 34(5):234-43. PubMed ID: 19362843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.