These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21674384)

  • 1. ZeroG: overground gait and balance training system.
    Hidler J; Brennan D; Black I; Nichols D; Brady K; Nef T
    J Rehabil Res Dev; 2011; 48(4):287-98. PubMed ID: 21674384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preserved gait kinematics during controlled body unloading.
    Awai L; Franz M; Easthope CS; Vallery H; Curt A; Bolliger M
    J Neuroeng Rehabil; 2017 Apr; 14(1):25. PubMed ID: 28376829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body weight-supported treadmill training is no better than overground training for individuals with chronic stroke: a randomized controlled trial.
    Middleton A; Merlo-Rains A; Peters DM; Greene JV; Blanck EL; Moran R; Fritz SL
    Top Stroke Rehabil; 2014; 21(6):462-76. PubMed ID: 25467394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overhead harness and trolly system for balance and ambulation assessment and training.
    Harburn KL; Hill KM; Kramer JF; Noh S; Vandervoort AA; Matheson JE
    Arch Phys Med Rehabil; 1993 Feb; 74(2):220-3. PubMed ID: 8431110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KineAssist: design and development of a robotic overground gait and balance therapy device.
    Patton J; Brown DA; Peshkin M; Santos-Munné JJ; Makhlin A; Lewis E; Colgate EJ; Schwandt D
    Top Stroke Rehabil; 2008; 15(2):131-9. PubMed ID: 18430678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effects of body weight unloading on overground gait biomechanical parameters.
    Fischer AG; Wolf A
    Clin Biomech (Bristol, Avon); 2015 Jun; 30(5):454-61. PubMed ID: 25798857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.
    Chisholm AE; Alamro RA; Williams AM; Lam T
    J Neuroeng Rehabil; 2017 Apr; 14(1):27. PubMed ID: 28399877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects.
    Barbeau H; Visintin M
    Arch Phys Med Rehabil; 2003 Oct; 84(10):1458-65. PubMed ID: 14586912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients.
    Kim K; Song WK; Chong WS; Yu CH
    Technol Health Care; 2018; 26(S1):259-268. PubMed ID: 29710754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidirectional transparent support for overground gait training.
    Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of body weight unloading on human gait characteristics: a systematic review.
    Apte S; Plooij M; Vallery H
    J Neuroeng Rehabil; 2018 Jun; 15(1):53. PubMed ID: 29925400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle activation during body weight-supported locomotion while using the ZeroG.
    Fenuta AM; Hicks AL
    J Rehabil Res Dev; 2014; 51(1):51-8. PubMed ID: 24805893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-wire body weight support system for interactive treadmill.
    Kim J; Oh S; Kim J; Kim J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():349-354. PubMed ID: 31374654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial.
    Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N
    Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of a multifaceted rehabilitation program including overground gait training for a child with cerebral palsy: A case report.
    Farrell E; Naber E; Geigle P
    Physiother Theory Pract; 2010 Jan; 26(1):56-61. PubMed ID: 20067354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of body weight unloading on kinetics and muscle activity of overweight males during Overground walking.
    Fischer AG; Wolf A
    Clin Biomech (Bristol, Avon); 2018 Feb; 52():80-85. PubMed ID: 29407862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of body-worn movement monitor technology for balance and gait rehabilitation.
    Horak F; King L; Mancini M
    Phys Ther; 2015 Mar; 95(3):461-70. PubMed ID: 25504484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Dynamic Body Weight Support overground co-walker enabling variable unloading ratio and Motion Tracking.
    Zhang X; Shang P; Li B
    Front Neurosci; 2023; 17():1188776. PubMed ID: 37360168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overground body-weight-supported gait training for children and youth with neuromuscular impairments.
    Kurz MJ; Stuberg W; Dejong S; Arpin DJ
    Phys Occup Ther Pediatr; 2013 Aug; 33(3):353-65. PubMed ID: 23477615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.