These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 21674687)
1. Alkali-like myosin light chain-1 (myl1) is an early marker for differentiating fast muscle cells in zebrafish. Burguière AC; Nord H; von Hofsten J Dev Dyn; 2011 Jul; 240(7):1856-63. PubMed ID: 21674687 [TBL] [Abstract][Full Text] [Related]
2. Myosin heavy chain expression in zebrafish and slow muscle composition. Bryson-Richardson RJ; Daggett DF; Cortes F; Neyt C; Keenan DG; Currie PD Dev Dyn; 2005 Jul; 233(3):1018-22. PubMed ID: 15830374 [TBL] [Abstract][Full Text] [Related]
3. Fibre-type specific expression of fast and slow essential myosin light chain mRNAs in trained human skeletal muscles. Jostarndt-Fögen K; Puntschart A; Hoppeler H; Billeter R Acta Physiol Scand; 1998 Nov; 164(3):299-308. PubMed ID: 9853018 [TBL] [Abstract][Full Text] [Related]
4. Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1. Liew HP; Choksi SP; Wong KN; Roy S Dev Biol; 2008 Dec; 324(2):226-35. PubMed ID: 18948093 [TBL] [Abstract][Full Text] [Related]
5. Six1a is required for the onset of fast muscle differentiation in zebrafish. Bessarab DA; Chong SW; Srinivas BP; Korzh V Dev Biol; 2008 Nov; 323(2):216-28. PubMed ID: 18789916 [TBL] [Abstract][Full Text] [Related]
6. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942 [TBL] [Abstract][Full Text] [Related]
7. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle. Leeuw T; Pette D Dev Genet; 1996; 19(2):163-8. PubMed ID: 8900049 [TBL] [Abstract][Full Text] [Related]
8. The molecular structures and expression patterns of zebrafish troponin I genes. Fu CY; Lee HC; Tsai HJ Gene Expr Patterns; 2009 Jun; 9(5):348-56. PubMed ID: 19602390 [TBL] [Abstract][Full Text] [Related]
9. Muscle fiber differentiation in fish embryos as shown by in situ hybridization of a large repertoire of muscle-specific transcripts. Chauvigné F; Cauty C; Rallière C; Rescan PY Dev Dyn; 2005 Jun; 233(2):659-66. PubMed ID: 15844199 [TBL] [Abstract][Full Text] [Related]
10. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Gannon J; Doran P; Kirwan A; Ohlendieck K Eur J Cell Biol; 2009 Nov; 88(11):685-700. PubMed ID: 19616867 [TBL] [Abstract][Full Text] [Related]
11. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity. Elworthy S; Hargrave M; Knight R; Mebus K; Ingham PW Development; 2008 Jun; 135(12):2115-26. PubMed ID: 18480160 [TBL] [Abstract][Full Text] [Related]
12. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. von Hofsten J; Elworthy S; Gilchrist MJ; Smith JC; Wardle FC; Ingham PW EMBO Rep; 2008 Jul; 9(7):683-9. PubMed ID: 18535625 [TBL] [Abstract][Full Text] [Related]
13. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218 [TBL] [Abstract][Full Text] [Related]
14. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations. Stål P Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228 [TBL] [Abstract][Full Text] [Related]
15. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. DiMario JX; Stockdale FE Dev Biol; 1997 Aug; 188(1):167-80. PubMed ID: 9245520 [TBL] [Abstract][Full Text] [Related]
16. Developmental transition of touch response from slow muscle-mediated coilings to fast muscle-mediated burst swimming in zebrafish. Naganawa Y; Hirata H Dev Biol; 2011 Jul; 355(2):194-204. PubMed ID: 21554867 [TBL] [Abstract][Full Text] [Related]
17. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Jackson HE; Ingham PW Mech Dev; 2013; 130(9-10):447-57. PubMed ID: 23811405 [TBL] [Abstract][Full Text] [Related]
18. Analysis of CRE-mediated recombination driven by myosin light chain 1/3 regulatory elements in embryonic and adult skeletal muscle: a tool to study fiber specification. Mourkioti F; Slonimsky E; Huth M; Berno V; Rosenthal N Genesis; 2008 Aug; 46(8):424-30. PubMed ID: 18693277 [TBL] [Abstract][Full Text] [Related]
19. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Zhang W; Roy S Dev Biol; 2017 Mar; 423(1):24-33. PubMed ID: 28161523 [TBL] [Abstract][Full Text] [Related]
20. Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos. Müller F; Williams DW; Kobolák J; Gauvry L; Goldspink G; Orbán L; Maclean N Mol Reprod Dev; 1997 Aug; 47(4):404-12. PubMed ID: 9211424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]