These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21675038)

  • 61. Ventilatory sensitivity to carbon dioxide: the influence of exercise and athleticism.
    McConnell AK; Semple ES
    Med Sci Sports Exerc; 1996 Jun; 28(6):685-91. PubMed ID: 8784756
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Does wearing clothing made of a synthetic "cooling" fabric improve indoor cycle exercise endurance in trained athletes?
    Abdallah SJ; Krug R; Jensen D
    Physiol Rep; 2015 Aug; 3(8):. PubMed ID: 26290527
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Short- and Long-Term Detraining on Maximal Oxygen Uptake in Athletes: A Systematic Review and Meta-Analysis.
    Zheng J; Pan T; Jiang Y; Shen Y
    Biomed Res Int; 2022; 2022():2130993. PubMed ID: 36017396
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Using V̇o
    Podlogar T; Leo P; Spragg J
    J Appl Physiol (1985); 2022 Jul; 133(1):144-147. PubMed ID: 35175104
    [No Abstract]   [Full Text] [Related]  

  • 65. A genetic-based algorithm for personalized resistance training.
    Jones N; Kiely J; Suraci B; Collins DJ; de Lorenzo D; Pickering C; Grimaldi KA
    Biol Sport; 2016 Jun; 33(2):117-26. PubMed ID: 27274104
    [TBL] [Abstract][Full Text] [Related]  

  • 66. HRV-Guided Training for Professional Endurance Athletes: A Protocol for a Cluster-Randomized Controlled Trial.
    Carrasco-Poyatos M; González-Quílez A; Martínez-González-Moro I; Granero-Gallegos A
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32751204
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls.
    Seidel O; Carius D; Roediger J; Rumpf S; Ragert P
    Exp Brain Res; 2019 Nov; 237(11):2957-2972. PubMed ID: 31506708
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interleukins 1-beta, -8, and histamine increases in highly trained, exercising athletes.
    Mucci P; Durand F; Lebel B; Bousquet J; Préfaut C
    Med Sci Sports Exerc; 2000 Jun; 32(6):1094-100. PubMed ID: 10862535
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diurnal Variation of Maximal Fat-Oxidation Rate in Trained Male Athletes.
    Amaro-Gahete FJ; Jurado-Fasoli L; Triviño AR; Sanchez-Delgado G; De-la-O A; Helge JW; Ruiz JR
    Int J Sports Physiol Perform; 2019 Sep; 14(8):1140-1146. PubMed ID: 30702364
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exercise-induced hypoxaemia in highly trained athletes.
    Powers SK; Williams J
    Sports Med; 1987; 4(1):46-53. PubMed ID: 3547538
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The relationship between posthypnotic suggestion and endurance in physically trained subjects.
    Jackson JA; Gass GC; Camp EM
    Int J Clin Exp Hypn; 1979 Jul; 27(3):278-93. PubMed ID: 120329
    [No Abstract]   [Full Text] [Related]  

  • 72. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.
    Stelzer I; Kröpfl JM; Fuchs R; Pekovits K; Mangge H; Raggam RB; Gruber HJ; Prüller F; Hofmann P; Truschnig-Wilders M; Obermayer-Pietsch B; Haushofer AC; Kessler HH; Mächler P
    Scand J Med Sci Sports; 2015 Oct; 25(5):e442-50. PubMed ID: 25438993
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of a Continuous and Discontinuous GXT on VO
    Shepherd BD; Price FG; Krings BM; Smith JW
    Int J Exerc Sci; 2022; 15(4):414-422. PubMed ID: 35518364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle.
    Zarębska EA; Kusy K; Słomińska EM; Kruszyna Ł; Zieliński J
    Metabolites; 2019 Oct; 9(10):. PubMed ID: 31623086
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise.
    Green S
    Eur J Appl Physiol Occup Physiol; 1993; 66(2):185-7. PubMed ID: 8472702
    [No Abstract]   [Full Text] [Related]  

  • 76. Citrus Flavonoid Supplementation Improves Exercise Performance in Trained Athletes.
    Overdevest E; Wouters JA; Wolfs KHM; van Leeuwen JJM; Possemiers S
    J Sports Sci Med; 2018 Mar; 17(1):24-30. PubMed ID: 29535575
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Block periodization of endurance training - a systematic review and meta-analysis.
    Mølmen KS; Øfsteng SJ; Rønnestad BR
    Open Access J Sports Med; 2019; 10():145-160. PubMed ID: 31802956
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study.
    Alf D; Schmidt ME; Siebrecht SC
    J Int Soc Sports Nutr; 2013; 10():24. PubMed ID: 23627788
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Overtraining in endurance athletes].
    Jidovtseff B; Crielaard JM
    Rev Med Liege; 2001 May; 56(5):343-52. PubMed ID: 11475932
    [TBL] [Abstract][Full Text] [Related]  

  • 80. External validation of VO2max prediction models based on recreational and elite endurance athletes.
    Wiecha S; Kasiak PS; Cieśliński I; Takken T; Palka T; Knechtle B; Nikolaidis PΤ; Małek ŁA; Postuła M; Mamcarz A; Śliż D
    PLoS One; 2023; 18(1):e0280897. PubMed ID: 36696387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.