BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21675281)

  • 1. Mental workload associated with operating an agricultural sprayer: an empirical approach.
    Dey AK; Mann DD
    J Agric Saf Health; 2011 Apr; 17(2):91-110. PubMed ID: 21675281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and diagnosticity of NASA-TLX and simplified SWAT to assess the mental workload associated with operating an agricultural sprayer.
    Dey A; Mann DD
    Ergonomics; 2010 Jul; 53(7):848-57. PubMed ID: 20582766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A complete task analysis to measure the workload associated with operating an agricultural sprayer equipped with a navigation device.
    Dey AK; Mann DD
    Appl Ergon; 2010 Jan; 41(1):146-9. PubMed ID: 19595292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of NASA-TLX scale, modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks.
    Mansikka H; Virtanen K; Harris D
    Ergonomics; 2019 Feb; 62(2):246-254. PubMed ID: 29708054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of auditory signals to the operation of an agricultural vehicle: results of pilot testing.
    Karimi D; Mondor TA; Mann DD
    J Agric Saf Health; 2008 Jan; 14(1):71-8. PubMed ID: 18376536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning rate and subjective mental workload in five truck driving tasks.
    Chi CF; Cheng CC; Shih YC; Sun IS; Chang TC
    Ergonomics; 2019 Mar; 62(3):391-405. PubMed ID: 30501487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving.
    Galy E; Paxion J; Berthelon C
    Ergonomics; 2018 Apr; 61(4):517-527. PubMed ID: 28817353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.
    Bashiri B; Mann DD
    J Agric Saf Health; 2015 Apr; 21(2):129-39. PubMed ID: 26204788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensitivity of Galvanic Skin Response for assessing mental workload in Indonesia.
    Widyanti A; Muslim K; Sutalaksana IZ
    Work; 2017; 56(1):111-117. PubMed ID: 28128789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driver's mental workload prediction model based on physiological indices.
    Yan S; Tran CC; Wei Y; Habiyaremye JL
    Int J Occup Saf Ergon; 2019 Sep; 25(3):476-484. PubMed ID: 28820660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of a newly developed steering unit with enhanced self-alignment and deadband on mental workload during driving of agricultural tractors.
    Dam P; Bilgram M; Brandi A; Frederiksen M; Langer TH; Samani A
    Appl Ergon; 2020 Nov; 89():103217. PubMed ID: 32763450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart rate variability and cognitive processing: The autonomic response to task demands.
    Luque-Casado A; Perales JC; Cárdenas D; Sanabria D
    Biol Psychol; 2016 Jan; 113():83-90. PubMed ID: 26638762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty.
    Jaquess KJ; Lo LC; Oh H; Lu C; Ginsberg A; Tan YY; Lohse KR; Miller MW; Hatfield BD; Gentili RJ
    Neuroscience; 2018 Nov; 393():305-318. PubMed ID: 30266685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular pressure is sensitive to cumulative and instantaneous mental workload.
    Vera J; Jiménez R; García JA; Cárdenas D
    Appl Ergon; 2017 Apr; 60():313-319. PubMed ID: 28166891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of control order, augmented feedback, input device and practice on tracking performance and perceived workload.
    Hancock PA
    Ergonomics; 1996 Sep; 39(9):1146-62. PubMed ID: 8681935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Physical and Mental Effort Alters Visual Function.
    Vera J; Jiménez R; García JA; Cárdenas D
    Optom Vis Sci; 2017 Aug; 94(8):797-806. PubMed ID: 28708697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocardiographic features for the measurement of drivers' mental workload.
    Heine T; Lenis G; Reichensperger P; Beran T; Doessel O; Deml B
    Appl Ergon; 2017 May; 61():31-43. PubMed ID: 28237018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viewing the workload of vigilance through the lenses of the NASA-TLX and the MRQ.
    Finomore VS; Shaw TH; Warm JS; Matthews G; Boles DB
    Hum Factors; 2013 Dec; 55(6):1044-63. PubMed ID: 24745198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.