BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21675747)

  • 1. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.
    Guo C; Yin S; Huang L; Sato T
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2794-9. PubMed ID: 21675747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties.
    Guo C; Yin S; Huang Y; Dong Q; Sato T
    Langmuir; 2011 Oct; 27(19):12172-8. PubMed ID: 21870876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties.
    Guo C; Yin S; Yan M; Kobayashi M; Kakihana M; Sato T
    Inorg Chem; 2012 Apr; 51(8):4763-71. PubMed ID: 22443484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires.
    Gu Z; Ma Y; Zhai T; Gao B; Yang W; Yao J
    Chemistry; 2006 Oct; 12(29):7717-23. PubMed ID: 16819734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple route to (NH4)(x)WO3 nanorods for near infrared absorption.
    Guo C; Yin S; Dong Q; Sato T
    Nanoscale; 2012 Jun; 4(11):3394-8. PubMed ID: 22543744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile One-Step Solvothermal Synthesis and Electrical Properties of Reduced Graphene Oxide/Rod-Shaped Potassium Tungsten Bronze Nanocomposite.
    Liu B; Yin S; Wang Y; Guo C; Wu X; Dong Q; Kobayashi M; Kakihana M; Sato T
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7305-10. PubMed ID: 26716327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping Sodium Tungsten Bronze-Like (Na
    Yang G; Hu D; Xia F; Yang C; Liu Y; He X; Shpotyuk Y; Chen H; Gao Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32206-32217. PubMed ID: 35786831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of platelike tungsten oxide thin film electrodes with high photoelectrode activity.
    Amano F; Tian M; Wu G; Ohtani B; Chen A
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4047-52. PubMed ID: 21919464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of a WO
    Tahmasebi N; Madmoli S
    RSC Adv; 2018 Feb; 8(13):7014-7021. PubMed ID: 35540319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer.
    Lee SY; Kim JY; Lee JY; Song HJ; Lee S; Choi KH; Shin G
    Nanoscale Res Lett; 2014; 9(1):294. PubMed ID: 24982605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment.
    Yang C; Chen JF; Zeng X; Cheng D; Huan H; Cao D
    Nanotechnology; 2016 Feb; 27(7):075203. PubMed ID: 26783034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts.
    Wang L; Zhan J; Fan W; Cui G; Sun H; Zhuo L; Zhao X; Tang B
    Chem Commun (Camb); 2010 Dec; 46(46):8833-5. PubMed ID: 20953497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating n-pentane isomerization activity to the tungsten surface density of WO(x)/ZrO2.
    Soultanidis N; Zhou W; Psarras AC; Gonzalez AJ; Iliopoulou EF; Kiely CJ; Wachs IE; Wong MS
    J Am Chem Soc; 2010 Sep; 132(38):13462-71. PubMed ID: 20815386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping.
    Miseki Y; Kudo A
    ChemSusChem; 2011 Feb; 4(2):245-51. PubMed ID: 20936645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tungsten oxide films by reactive and conventional evaporation techniques.
    Demiryont H; Nietering KE
    Appl Opt; 1989 Apr; 28(8):1494-500. PubMed ID: 20548685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photoelectrocatalytic performance of Zn-doped WO(3) photocatalysts for nitrite ions degradation under visible light.
    Cheng XF; Leng WH; Liu DP; Zhang JQ; Cao CN
    Chemosphere; 2007 Aug; 68(10):1976-84. PubMed ID: 17482660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.
    Li G; Zhang D; Yu JC; Leung MK
    Environ Sci Technol; 2010 Jun; 44(11):4276-81. PubMed ID: 20459055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods.
    Guo C; Yin S; Huang L; Yang L; Sato T
    Chem Commun (Camb); 2011 Aug; 47(31):8853-5. PubMed ID: 21748146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvothermal fabrication of rubidium tungsten bronze for the absorption of near infrared light.
    Guo C; Yin S; Dong Q; Kimura T; Tanaka M; Hang le T; Wu X; Sato T
    J Nanosci Nanotechnol; 2013 May; 13(5):3236-9. PubMed ID: 23858836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.