These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 21675815)

  • 1. Defining candidate drug characteristics for Long-QT (LQT3) syndrome.
    Tveito A; Lines GT; Li P; McCulloch A
    Math Biosci Eng; 2011 Jul; 8(3):861-73. PubMed ID: 21675815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart.
    Bottino D; Penland RC; stamps A; Traebert M; Dumotier B; Georgiva A; Helmlinger G; Lett GS
    Prog Biophys Mol Biol; 2006; 90(1-3):414-43. PubMed ID: 16321428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia.
    Clancy CE; Tateyama M; Liu H; Wehrens XH; Kass RS
    Circulation; 2003 May; 107(17):2233-7. PubMed ID: 12695286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular basis for the therapy of the long QT syndrome.
    Priori SG; Napolitano C; Schwartz PJ
    Arch Mal Coeur Vaiss; 1996 Sep; 89(9):1185-7. PubMed ID: 8952843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating.
    Wehrens XH; Rossenbacker T; Jongbloed RJ; Gewillig M; Heidbüchel H; Doevendans PA; Vos MA; Wellens HJ; Kass RS
    Hum Mutat; 2003 May; 21(5):552. PubMed ID: 12673799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmogenic substrate and its modification by nicorandil in a murine model of long QT type 3 syndrome.
    Hothi SS; Booth SW; Sabir IN; Killeen MJ; Simpson F; Zhang Y; Grace AA; Huang CL
    Prog Biophys Mol Biol; 2008; 98(2-3):267-80. PubMed ID: 19351517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New mechanism contributing to drug-induced arrhythmia: rescue of a misprocessed LQT3 mutant.
    Liu K; Yang T; Viswanathan PC; Roden DM
    Circulation; 2005 Nov; 112(21):3239-46. PubMed ID: 16301357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mexiletine on long QT syndrome model.
    Wang HW; Zheng YQ; Yang ZF; Li CZ; Liu YM
    Acta Pharmacol Sin; 2003 Apr; 24(4):316-20. PubMed ID: 12676070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action potential changes associated with a slowed inactivation of cardiac voltage-gated sodium channels by KB130015.
    Macianskiene R; Bito V; Raeymaekers L; Brandts B; Sipido KR; Mubagwa K
    Br J Pharmacol; 2003 Aug; 139(8):1469-79. PubMed ID: 12922934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic mechanism of the enhanced rate-dependent QT shortening in the R1623Q mutant of the LQT3 syndrome.
    Oginosawa Y; Nagatomo T; Abe H; Makita N; Makielski JC; Nakashima Y
    Cardiovasc Res; 2005 Jan; 65(1):138-47. PubMed ID: 15621041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Long QT syndrome and Brugada syndrome: 2 aspects of the same disease?].
    Cerrone M; Crotti L; Faggiano G; De Michelis V; Napolitano C; Schwartz PJ; Priori SG
    Ital Heart J Suppl; 2001 Mar; 2(3):253-7. PubMed ID: 11307783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical simulations of the effects of altered AMP-kinase activity on I and the action potential in rat ventricle.
    Bazzazi H; Clark RB; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S162-S168. PubMed ID: 16686674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ajmaline on transient outward current in rat ventricular myocytes.
    Bébarová M; Matejovic P; Pásek M; Simurdová M; Simurda J
    Gen Physiol Biophys; 2005 Mar; 24(1):27-45. PubMed ID: 15900085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine-induced shortening of the epicardial action potential duration may increase repolarization gradients and LQT3 arrhythmic risk.
    Flaim SN; McCulloch AD
    J Electrocardiol; 2007; 40(6 Suppl):S66-9. PubMed ID: 17993332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HERG and KvLQT1/IsK, the cardiac K+ channels involved in long QT syndromes, are targets for calcium channel blockers.
    Chouabe C; Drici MD; Romey G; Barhanin J; Lazdunski M
    Mol Pharmacol; 1998 Oct; 54(4):695-703. PubMed ID: 9765513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From genetics to cellular function using computational biology.
    Rudy Y
    Ann N Y Acad Sci; 2004 May; 1015():261-70. PubMed ID: 15201166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional interaction between DPI 201-106, a drug that mimics congenital long QT syndrome, and sevoflurane on the guinea-pig cardiac action potential.
    Kang J; Chen XL; Reynolds WP; Rampe D
    Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1313-6. PubMed ID: 17892500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6.
    Lu Y; Mahaut-Smith MP; Huang CL; Vandenberg JI
    J Physiol; 2003 Aug; 551(Pt 1):253-62. PubMed ID: 12923204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique.
    Berecki G; Zegers JG; Bhuiyan ZA; Verkerk AO; Wilders R; van Ginneken AC
    J Physiol; 2006 Jan; 570(Pt 2):237-50. PubMed ID: 16254012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.