These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 21675816)
1. Sveir epidemiological model with varying infectivity and distributed delays. Wang J; Huang G; Takeuchi Y; Liu S Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816 [TBL] [Abstract][Full Text] [Related]
2. SVIR epidemic models with vaccination strategies. Liu X; Takeuchi Y; Iwami S J Theor Biol; 2008 Jul; 253(1):1-11. PubMed ID: 18023819 [TBL] [Abstract][Full Text] [Related]
3. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. McCluskey CC Math Biosci Eng; 2012 Oct; 9(4):819-41. PubMed ID: 23311424 [TBL] [Abstract][Full Text] [Related]
4. Stability and bifurcations in an epidemic model with varying immunity period. Blyuss KB; Kyrychko YN Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905 [TBL] [Abstract][Full Text] [Related]
5. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Wang X; Liu S Math Biosci Eng; 2012 Jul; 9(3):685-95. PubMed ID: 22881032 [TBL] [Abstract][Full Text] [Related]
6. Global dynamics of a staged-progression model with amelioration for infectious diseases. Guo H; Li MY J Biol Dyn; 2008 Apr; 2(2):154-68. PubMed ID: 22880698 [TBL] [Abstract][Full Text] [Related]
7. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Huang G; Takeuchi Y; Ma W; Wei D Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354 [TBL] [Abstract][Full Text] [Related]
8. Global stability for epidemic model with constant latency and infectious periods. Huang G; Beretta E; Takeuchi Y Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066 [TBL] [Abstract][Full Text] [Related]
9. An SIS patch model with variable transmission coefficients. Gao D; Ruan S Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886 [TBL] [Abstract][Full Text] [Related]
10. Seir epidemiological model with varying infectivity and infinite delay. Röst G; Wu J Math Biosci Eng; 2008 Apr; 5(2):389-402. PubMed ID: 18613739 [TBL] [Abstract][Full Text] [Related]
11. Global stability analysis of SEIR model with holling type II incidence function. Safi MA; Garba SM Comput Math Methods Med; 2012; 2012():826052. PubMed ID: 23091562 [TBL] [Abstract][Full Text] [Related]
12. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
13. Global dynamics of an epidemiological model with age of infection and disease relapse. Xu R J Biol Dyn; 2018 Dec; 12(1):118-145. PubMed ID: 29198167 [TBL] [Abstract][Full Text] [Related]
14. An SEIR epidemic model with constant latency time and infectious period. Beretta E; Breda D Math Biosci Eng; 2011 Oct; 8(4):931-52. PubMed ID: 21936593 [TBL] [Abstract][Full Text] [Related]
15. Global stability analysis of a delayed susceptible-infected-susceptible epidemic model. Paulhus C; Wang XS J Biol Dyn; 2015; 9 Suppl 1():45-50. PubMed ID: 24978018 [TBL] [Abstract][Full Text] [Related]
16. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related]
17. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Melnik AV; Korobeinikov A Math Biosci Eng; 2011 Oct; 8(4):1019-34. PubMed ID: 21936598 [TBL] [Abstract][Full Text] [Related]
18. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Xu J; Zhou Y Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186 [TBL] [Abstract][Full Text] [Related]
19. Modeling the effects of carriers on transmission dynamics of infectious diseases. Kalajdzievska D; Li MY Math Biosci Eng; 2011 Jul; 8(3):711-22. PubMed ID: 21675806 [TBL] [Abstract][Full Text] [Related]
20. Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE). Kamgang JC; Sallet G Math Biosci; 2008 May; 213(1):1-12. PubMed ID: 18405926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]