These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21675923)

  • 1. Olpidium bornovanus-mediated germination of ascospores of Monosporascus cannonballus: a host-specific rhizosphere interaction.
    Stanghellini ME; Misaghi IJ
    Phytopathology; 2011 Jul; 101(7):794-6. PubMed ID: 21675923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus.
    Stanghellini ME; Kim DH; Waugh M
    Phytopathology; 2000 Mar; 90(3):243-7. PubMed ID: 18944615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First Report of Olpidium bornovanus and O. virulentus on Melon in Italy.
    Aleandri MP; Martignoni D; Reda R; Alfaro-Fernández A; Font MI; Armengol J; Chilosi G
    Plant Dis; 2014 Jul; 98(7):997. PubMed ID: 30708871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproductive Potential of Monosporascus cannonballus.
    Waugh MM; Kim DH; Ferrin DM; Stanghellini ME
    Plant Dis; 2003 Jan; 87(1):45-50. PubMed ID: 30812699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection.
    Roig C; Fita A; Ríos G; Hammond JP; Nuez F; Picó B
    BMC Genomics; 2012 Nov; 13():601. PubMed ID: 23134692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of Olpidium bornovanus and Melon necrotic spot virus with Vine Decline of Melon in Guatemala.
    de Cara M; López V; Córdoba MC; Santos M; Jordá C; Tello JC
    Plant Dis; 2008 May; 92(5):709-713. PubMed ID: 30769589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the overwintering of cleistothecia and conidia of Erysiphe betae causal agent of sugar beet powdery mildew in Iran.
    Sheikholeslami M; Okhovvat SM; Hedjaroude GA; Sharifi-Tehrani A; Javan-Nikkha M
    Commun Agric Appl Biol Sci; 2005; 70(3):333-7. PubMed ID: 16637197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxy proline and gamma-aminobutyric acid: markers of susceptibility to vine decline disease caused by the fungus
    Marquez SA; Crosby K; Patil B; Avila C; Ibrahim AM; Pessoa H; Singh J
    PeerJ; 2023; 11():e14932. PubMed ID: 36883060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum.
    Jaroszuk-Sciseł J; Kurek E; Rodzik B; Winiarczyk K
    Mycol Res; 2009 Oct; 113(Pt 10):1053-61. PubMed ID: 19591930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.
    Jones EE; Stewart A; Whipps JM
    Fungal Biol; 2011 Sep; 115(9):871-81. PubMed ID: 21872184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of root uptake and systemic vine-transport of Salmonella enterica sv. Typhimurium by melon (Cucumis melo) during field production.
    Lopez-Velasco G; Sbodio A; Tomás-Callejas A; Wei P; Tan KH; Suslow TV
    Int J Food Microbiol; 2012 Aug; 158(1):65-72. PubMed ID: 22824339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.
    Mendes R; Kruijt M; de Bruijn I; Dekkers E; van der Voort M; Schneider JH; Piceno YM; DeSantis TZ; Andersen GL; Bakker PA; Raaijmakers JM
    Science; 2011 May; 332(6033):1097-100. PubMed ID: 21551032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on a species of Monosporascus isolated from Triticum.
    Hawksworth DL; Ciccarone A
    Mycopathologia; 1979 Feb; 66(3):147-51. PubMed ID: 440401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists.
    Savchuk S; Dilantha Fernando WG
    FEMS Microbiol Ecol; 2004 Sep; 49(3):379-88. PubMed ID: 19712288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato.
    Viebahn M; Veenman C; Wernars K; van Loon LC; Smit E; Bakker PA
    FEMS Microbiol Ecol; 2005 Jul; 53(2):245-53. PubMed ID: 16329944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [In vitro control of Sclerotinia sclerotiorum and Gaeumannomyces graminis by bacteria of the fluorescent Pseudomonas group].
    Andreoli YE; Laich FS; Navarro CA
    Rev Argent Microbiol; 1993; 25(2):70-9. PubMed ID: 8234734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew.
    Rossi V; Caffi T; Legler SE
    Phytopathology; 2010 Dec; 100(12):1321-9. PubMed ID: 21062172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell biology of the plant-powdery mildew interaction.
    Hückelhoven R; Panstruga R
    Curr Opin Plant Biol; 2011 Dec; 14(6):738-46. PubMed ID: 21924669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colonization of cantaloupe roots by Monosporascus cannonballus.
    Waugh MM; Ferrin DM; Stanghellini ME
    Mycol Res; 2005 Nov; 109(Pt 11):1297-301. PubMed ID: 16279423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germination of Calonectria crotalariae conidia and ascospores on soil.
    Hwang SC; Ko WH
    Mycologia; 1974; 66(6):1053-5. PubMed ID: 4444725
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.