These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21676410)

  • 1. A molecular simulation of interactions between graphene nanosheets and supercritical CO2.
    Wu B; Yang X
    J Colloid Interface Sci; 2011 Sep; 361(1):1-8. PubMed ID: 21676410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulation of interaction between passivated gold nanoparticles in supercritical CO2.
    Sun L; Yang X; Wu B; Tang L
    J Chem Phys; 2011 Nov; 135(20):204703. PubMed ID: 22128948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation.
    Shih CJ; Lin S; Strano MS; Blankschtein D
    J Am Chem Soc; 2010 Oct; 132(41):14638-48. PubMed ID: 20879739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation structure and dynamics for passivated Au nanoparticle in supercritical CO2: a molecular dynamic simulation.
    Hu Y; Wu B; Xu Z; Yang Z; Yang X
    J Colloid Interface Sci; 2011 Jan; 353(1):22-9. PubMed ID: 20934708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulations of structures and solvation free energies of passivated gold nanoparticles in supercritical CO(2).
    Yang Z; Yang X; Xu Z; Yang N
    J Chem Phys; 2010 Sep; 133(9):094702. PubMed ID: 20831328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions.
    Lin S; Shih CJ; Strano MS; Blankschtein D
    J Am Chem Soc; 2011 Aug; 133(32):12810-23. PubMed ID: 21736367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of swelling and interlayer structure for organoclay in supercritical CO(2).
    Yu Y; Yang X
    Phys Chem Chem Phys; 2011 Jan; 13(1):282-90. PubMed ID: 20978663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation.
    Xu Z; Yang X; Yang Z
    Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of 2D graphene, functionalized graphene, and Ti
    Khaledialidusti R; Mahdavi E; Barnoush A
    Phys Chem Chem Phys; 2019 Jun; 21(24):12968-12976. PubMed ID: 31165831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes.
    Jo K; Lee T; Choi HJ; Park JH; Lee DJ; Lee DW; Kim BS
    Langmuir; 2011 Mar; 27(5):2014-8. PubMed ID: 21226499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface.
    Zhao L; Lin S; Mendenhall JD; Yuet PK; Blankschtein D
    J Phys Chem B; 2011 May; 115(19):6076-87. PubMed ID: 21517060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of water molecules in the spontaneous release of protein by graphene sheets.
    Liang LJ; Wang Q; Wu T; Sun TY; Kang Y
    Chemphyschem; 2013 Sep; 14(13):2902-9. PubMed ID: 23881843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide nanocolloids.
    Luo J; Cote LJ; Tung VC; Tan AT; Goins PE; Wu J; Huang J
    J Am Chem Soc; 2010 Dec; 132(50):17667-9. PubMed ID: 21105686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides.
    Liang LJ; Wu T; Kang Y; Wang Q
    Chemphyschem; 2013 Jun; 14(8):1626-32. PubMed ID: 23554343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure.
    Schlierf A; Yang H; Gebremedhn E; Treossi E; Ortolani L; Chen L; Minoia A; Morandi V; Samorì P; Casiraghi C; Beljonne D; Palermo V
    Nanoscale; 2013 May; 5(10):4205-16. PubMed ID: 23467481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous liquid crystals of graphene oxide.
    Xu Z; Gao C
    ACS Nano; 2011 Apr; 5(4):2908-15. PubMed ID: 21375309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the hydration force: water-mediated interaction between two hydrophilic plates.
    Eun C; Berkowitz ML
    J Phys Chem B; 2009 Oct; 113(40):13222-8. PubMed ID: 19518117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation.
    Rangappa D; Sone K; Wang M; Gautam UK; Golberg D; Itoh H; Ichihara M; Honma I
    Chemistry; 2010 Jun; 16(22):6488-94. PubMed ID: 20414913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.