These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
874 related articles for article (PubMed ID: 21676489)
1. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Allen LH; Kakani VG; Vu JC; Boote KJ J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489 [TBL] [Abstract][Full Text] [Related]
2. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. Kakani VG; Vu JC; Allen LH; Boote KJ J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494 [TBL] [Abstract][Full Text] [Related]
3. Growth at elevated CO(2) delays the adverse effects of drought stress on leaf photosynthesis of the C(4) sugarcane. Vu JC; Allen LH J Plant Physiol; 2009 Jan; 166(2):107-16. PubMed ID: 18462832 [TBL] [Abstract][Full Text] [Related]
4. Impairment of C(4) photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO(2)] in maize. Markelz RJ; Strellner RS; Leakey AD J Exp Bot; 2011 May; 62(9):3235-46. PubMed ID: 21398428 [TBL] [Abstract][Full Text] [Related]
5. Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. Wijewardana C; Henry WB; Gao W; Reddy KR J Photochem Photobiol B; 2016 Jul; 160():198-209. PubMed ID: 27113447 [TBL] [Abstract][Full Text] [Related]
6. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. De Souza AP; Gaspar M; Da Silva EA; Ulian EC; Waclawovsky AJ; Nishiyama MY; Dos Santos RV; Teixeira MM; Souza GM; Buckeridge MS Plant Cell Environ; 2008 Aug; 31(8):1116-27. PubMed ID: 18433443 [TBL] [Abstract][Full Text] [Related]
7. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
8. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought. De Souza AP; Cocuron JC; Garcia AC; Alonso AP; Buckeridge MS Plant Physiol; 2015 Nov; 169(3):1755-65. PubMed ID: 26336093 [TBL] [Abstract][Full Text] [Related]
9. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. Abu-Ria ME; Elghareeb EM; Shukry WM; Abo-Hamed SA; Ibraheem F BMC Plant Biol; 2024 Jun; 24(1):514. PubMed ID: 38849739 [TBL] [Abstract][Full Text] [Related]
10. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Jin J; Lauricella D; Armstrong R; Sale P; Tang C Ann Bot; 2015 Nov; 116(6):975-85. PubMed ID: 25429008 [TBL] [Abstract][Full Text] [Related]
12. Effect of elevated CO2 and spectral quality on whole plant gas exchange patterns in tomatoes. Lanoue J; Leonardos ED; Khosla S; Hao X; Grodzinski B PLoS One; 2018; 13(10):e0205861. PubMed ID: 30335803 [TBL] [Abstract][Full Text] [Related]
13. Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. del Amor FM; Cuadra-Crespo P; Walker DJ; Cámara JM; Madrid R J Plant Physiol; 2010 Oct; 167(15):1232-8. PubMed ID: 20542351 [TBL] [Abstract][Full Text] [Related]
14. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Sicher RC; Barnaby JY Physiol Plant; 2012 Mar; 144(3):238-53. PubMed ID: 22150442 [TBL] [Abstract][Full Text] [Related]
15. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study. Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842 [TBL] [Abstract][Full Text] [Related]
16. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
17. [Responses of agricultural crops of free-air CO2 enrichment]. Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686 [TBL] [Abstract][Full Text] [Related]
18. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci ) mechanism. Kelly JW; Duursma RA; Atwell BJ; Tissue DT; Medlyn BE New Phytol; 2016 Mar; 209(4):1600-12. PubMed ID: 26526873 [TBL] [Abstract][Full Text] [Related]
19. Elevated CO(2) and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro. Meibaum B; Riede S; Schröder B; Manderscheid R; Weigel HJ; Breves G Arch Anim Nutr; 2012 Dec; 66(6):473-89. PubMed ID: 23082822 [TBL] [Abstract][Full Text] [Related]
20. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]