These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 21676607)

  • 61. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells.
    Gnana Kumar G; Awan Z; Suk Nahm K; Xavier JS
    Biosens Bioelectron; 2014 Mar; 53():528-34. PubMed ID: 24240107
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Porous Carbon Nanosheets Codoped with Nitrogen and Sulfur for Oxygen Reduction Reaction in Microbial Fuel Cells.
    Yuan H; Hou Y; Wen Z; Guo X; Chen J; He Z
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18672-8. PubMed ID: 26237336
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A μL-scale micromachined microbial fuel cell having high power density.
    Choi S; Lee HS; Yang Y; Parameswaran P; Torres CI; Rittmann BE; Chae J
    Lab Chip; 2011 Mar; 11(6):1110-7. PubMed ID: 21311808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae.
    Zeng L; Zhang L; Li W; Zhao S; Lei J; Zhou Z
    Biosens Bioelectron; 2010 Aug; 25(12):2696-700. PubMed ID: 20570127
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improved bioelectrochemical performance of MnO
    Chen J; Zhao K; Wu Y; Liu J; Wang R; Yang Y; Liu Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49052-49059. PubMed ID: 36764990
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.
    Hou H; Li L; de Figueiredo P; Han A
    Biosens Bioelectron; 2011 Jan; 26(5):2680-4. PubMed ID: 20655725
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material.
    Kalathil S; Van Nguyen H; Shim JJ; Khan MM; Lee J; Cho MH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7712-6. PubMed ID: 24245320
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.
    Yang T; Li K; Pu L; Liu Z; Ge B; Pan Y; Liu Y
    Biosens Bioelectron; 2016 Dec; 86():129-134. PubMed ID: 27344608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells.
    Wang Z; Jia R; Zheng J; Zhao J; Li L; Song J; Zhu Z
    ACS Nano; 2011 Mar; 5(3):1677-84. PubMed ID: 21309566
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction.
    Liu H; Matsuda S; Hashimoto K; Nakanishi S
    ChemSusChem; 2012 Jun; 5(6):1054-8. PubMed ID: 22489008
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.
    Yang Z; Yao Z; Li G; Fang G; Nie H; Liu Z; Zhou X; Chen X; Huang S
    ACS Nano; 2012 Jan; 6(1):205-11. PubMed ID: 22201338
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.
    Lefebvre O; Tang Z; Fung MP; Chua DH; Chang IS; Ng HY
    Biosens Bioelectron; 2012 Jan; 31(1):164-9. PubMed ID: 22061267
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.
    An J; Jeon H; Lee J; Chang IS
    Environ Sci Technol; 2011 Jun; 45(12):5441-6. PubMed ID: 21585217
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes.
    Biffinger JC; Pietron J; Ray R; Little B; Ringeisen BR
    Biosens Bioelectron; 2007 Mar; 22(8):1672-9. PubMed ID: 16939710
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes.
    Liang Y; Wang H; Diao P; Chang W; Hong G; Li Y; Gong M; Xie L; Zhou J; Wang J; Regier TZ; Wei F; Dai H
    J Am Chem Soc; 2012 Sep; 134(38):15849-57. PubMed ID: 22957510
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sewage sludge-derived carbon-doped manganese as efficient cathode catalysts in microbial fuel cells.
    Huang J; Feng H; Jia Y; Shen D; Xu Y
    Water Sci Technol; 2019 Oct; 80(8):1399-1406. PubMed ID: 31961802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.