These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2167667)

  • 1. Phytohemagglutinin rapidly lyses S49 T-lymphoma cells and the cytotoxicity is not mediated by generation of cAMP or increase in cytosolic calcium.
    Gupta A; Hruska KA; Wedner HJ
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1035-43. PubMed ID: 2167667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide metabolism and the calcium response to concanavalin A in S49 T-lymphoma cells. A comparison with thymocytes.
    Taylor MV; Hesketh TR; Metcalfe JC
    Biochem J; 1988 Feb; 249(3):847-55. PubMed ID: 2833228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling.
    Watson PA
    J Biol Chem; 1989 Sep; 264(25):14735-40. PubMed ID: 2570067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anesthetic barbiturates enhance Gs alpha-dependent cyclic AMP production in S49 mouse lymphoma cells.
    Gonzales JM
    J Neurochem; 1995 Jun; 64(6):2559-66. PubMed ID: 7760036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid ethyl ester effects on interleukin-2 production, cyclic AMP synthesis, and calcium influx in human mononuclear cells.
    Alhomsi K; Laposata M
    Alcohol Clin Exp Res; 2006 Jul; 30(7):1121-5. PubMed ID: 16792558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx.
    Burnay MM; Vallotton MB; Capponi AM; Rossier MF
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):21-7. PubMed ID: 9461485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelationship between signals transduced by phytohemagglutinin and interleukin 1.
    Mills GB; Hill M; McGill M; May C; Stanley J; Stewart DJ; Mellors A; Gelfand EW
    J Cell Physiol; 1990 Mar; 142(3):539-51. PubMed ID: 1690213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP-induced cytolysis in S49 cells: selection of an unresponsive "deathless" mutant.
    Lemaire I; Coffino P
    Cell; 1977 May; 11(1):149-55. PubMed ID: 194702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumorigenicity of the cyc- variant of the S49 murine lymphoma deficient in the Gs-alpha subunit of adenylate cyclase.
    Stadel JM; Johnson RK; Mirabelli CK; Powers DA; Sung CM; Faucette LF; McCabe FL; Crooke ST
    Cancer Res; 1988 Feb; 48(3):641-4. PubMed ID: 2825980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of beta-adrenergic-induced cAMP accumulation in activated T-cells.
    Carlson SL; Trauth K; Brooks WH; Roszman TL
    J Cell Physiol; 1994 Oct; 161(1):39-48. PubMed ID: 7929606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the requirements for human T cell mitogenesis by using suboptimal concentrations of phytohemagglutinin.
    Mills GB; Lee JW; Cheung RK; Gelfand EW
    J Immunol; 1985 Nov; 135(5):3087-93. PubMed ID: 2995486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenergic receptor levels and function after growth of S49 lymphoma cells in low concentrations of epinephrine.
    Proll MA; Clark RB; Goka TJ; Barber R; Butcher RW
    Mol Pharmacol; 1992 Jul; 42(1):116-22. PubMed ID: 1321952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of lymphoma cell death induced by cyclic AMP.
    Coffino P; Bourne HR; Tomkins GM
    Am J Pathol; 1975 Oct; 81(1):199-204. PubMed ID: 170834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of m3 subtype muscarinic acetylcholine receptors and receptor-mediated increases in the cytoplasmic concentration of Ca2+ in Jurkat, a human leukemic helper T lymphocyte line.
    Kaneda T; Kitamura Y; Nomura Y
    Mol Pharmacol; 1993 Mar; 43(3):356-64. PubMed ID: 8383801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serum-stimulated cyclic-AMP production in S49 lymphoma cells grown in serum-free medium.
    Darfler FJ; Mullen MD; Insel PA
    Biochim Biophys Acta; 1984 Mar; 803(3):203-9. PubMed ID: 6322858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP/PKA-promoted apoptosis: insights from studies of S49 lymphoma cells.
    Insel PA; Wilderman A; Zhang L; Keshwani MM; Zambon AC
    Horm Metab Res; 2014 Nov; 46(12):854-62. PubMed ID: 25028794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of PHA and anti-T3 induced transduction mechanisms in a human T-cell leukaemia line.
    Ng J; Fredholm B; Jondal M; Andersson T
    Int J Immunopharmacol; 1987; 9(1):17-22. PubMed ID: 3495499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system.
    Keshwani MM; Kanter JR; Ma Y; Wilderman A; Darshi M; Insel PA; Taylor SS
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12681-6. PubMed ID: 26417071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP is not a direct regulator of calcium flux and hydrolysis of phosphoinositides in human lymphocytes.
    Qiu R; Melmon KL; Khan MM
    Immunopharmacology; 1993; 25(1):37-49. PubMed ID: 8391518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.