These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21676731)

  • 21. Growth, stress, and acclimation responses to fluctuating temperatures in field and domesticated populations of
    Kingsolver JG; Moore ME; Hill CA; Augustine KE
    Ecol Evol; 2020 Dec; 10(24):13980-13989. PubMed ID: 33391696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferring temperature adaptation from thermal performance curves of somatic growth rate: The importance of growth measurements and mortality.
    Einum S; Bartuseviciute V; Fossen EIF; Pelabon C
    J Evol Biol; 2023 Feb; 36(2):424-431. PubMed ID: 36484596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoupling of behavioural and physiological thermal performance curves in ectothermic animals: a critical adaptive trait.
    Monaco CJ; McQuaid CD; Marshall DJ
    Oecologia; 2017 Dec; 185(4):583-593. PubMed ID: 29027027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal plasticity due to parental and early-life environments in the jacky dragon (Amphibolurus muricatus).
    So CKJ; Schwanz LE
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; 329(6-7):308-316. PubMed ID: 29938929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard.
    de Jong MJ; White CR; Wong BBM; Chapple DG
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36354342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change.
    Kingsolver JG; Buckley LB
    Curr Opin Insect Sci; 2020 Oct; 41():17-24. PubMed ID: 32599547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic components in a thermal developmental plasticity of the beetle Tribolium castaneum.
    Czarnoleski M; Kramarz P; Małek D; Drobniak SM
    J Therm Biol; 2017 Aug; 68(Pt A):55-62. PubMed ID: 28689722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GENETIC VARIATION FOR PHENOTYPIC PLASTICITY IN THE LARVAL LIFE HISTORY OF SPADEFOOT TOADS (SCAPHIOPUS COUCHII).
    Newman RA
    Evolution; 1994 Dec; 48(6):1773-1785. PubMed ID: 28565166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment.
    Bernhardt JR; Sunday JM; Thompson PL; O'Connor MI
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30209223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.
    Schulte PM; Healy TM; Fangue NA
    Integr Comp Biol; 2011 Nov; 51(5):691-702. PubMed ID: 21841184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.
    Bartheld JL; Artacho P; Bacigalupe L
    J Therm Biol; 2017 Dec; 70(Pt B):80-85. PubMed ID: 29108561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.
    Seebacher F; Little AG
    Front Physiol; 2017; 8():575. PubMed ID: 28824463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ADAPTIVE PHENOTYPIC PLASTICITY IN GROWTH, DEVELOPMENT, AND BODY SIZE IN THE YELLOW DUNG FLY.
    Blanckenhorn WU
    Evolution; 1998 Oct; 52(5):1394-1407. PubMed ID: 28565396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic variation, simplicity, and evolutionary constraints for function-valued traits.
    Kingsolver JG; Heckman N; Zhang J; Carter PA; Knies JL; Stinchcombe JR; Meyer K
    Am Nat; 2015 Jun; 185(6):E166-81. PubMed ID: 25996868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.
    Kivelä SM; Svensson B; Tiwe A; Gotthard K
    Evolution; 2015 Sep; 69(9):2399-413. PubMed ID: 26202579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures.
    Ketola T; Saarinen K
    J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the physiological performance of ectotherms in fluctuating thermal environments.
    Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS
    J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative genetic variation for thermal performance curves within and among natural populations of Drosophila serrata.
    Latimer CA; Wilson RS; Chenoweth SF
    J Evol Biol; 2011 May; 24(5):965-75. PubMed ID: 21306462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity.
    Gibert P; Capy P; Imasheva A; Moreteau B; Morin JP; Pétavy G; David JR
    Genetica; 2004 Mar; 120(1-3):165-79. PubMed ID: 15088656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect.
    Tüzün N; Op de Beeck L; Brans KI; Janssens L; Stoks R
    Evol Appl; 2017 Dec; 10(10):1067-1075. PubMed ID: 29151861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.