These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21676731)

  • 41. Quantitative genetics of temperature performance curves of Neurospora crassa.
    Moghadam NN; Sidhu K; Summanen PAM; Ketola T; Kronholm I
    Evolution; 2020 Aug; 74(8):1772-1787. PubMed ID: 32432345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Divergence and constraint in the thermal sensitivity of aquatic insect swimming performance.
    Shah AA; Bacmeister EMS; Rubalcaba JG; Ghalambor CK
    Curr Zool; 2020 Oct; 66(5):555-564. PubMed ID: 33293933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transgenerational and within-generation plasticity shape thermal performance curves.
    Cavieres G; Alruiz JM; Medina NR; Bogdanovich JM; Bozinovic F
    Ecol Evol; 2019 Feb; 9(4):2072-2082. PubMed ID: 30847093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L.
    Kingsolver JG
    Physiol Biochem Zool; 2000; 73(5):621-8. PubMed ID: 11073798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal Responses Differ across Levels of Biological Organization.
    Iverson ENK; Nix R; Abebe A; Havird JC
    Integr Comp Biol; 2020 Aug; 60(2):361-374. PubMed ID: 32483618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects.
    Teder T; Taits K; Kaasik A; Tammaru T
    Evol Lett; 2022 Dec; 6(6):394-411. PubMed ID: 36579171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repeatability of thermal reaction norms for spontaneous locomotor activity in juvenile newts.
    Baškiera S; Gvoždík L
    J Therm Biol; 2019 Feb; 80():126-132. PubMed ID: 30784476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae).
    Sibilia CD; Brosko KA; Hickling CH; Thompson LM; Grayson KL; Olson JR
    J Insect Sci; 2018 Jul; 18(4):. PubMed ID: 30010926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.
    Berger D; Walters RJ; Blanckenhorn WU
    J Evol Biol; 2014 Sep; 27(9):1975-89. PubMed ID: 25039963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient.
    Nilsson-Örtman V; Rogell B; Stoks R; Johansson F
    Heredity (Edinb); 2015 Oct; 115(4):366-78. PubMed ID: 25649500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).
    Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS
    J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions.
    Tüzün N; Stoks R
    Curr Opin Insect Sci; 2018 Oct; 29():78-84. PubMed ID: 30551830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic basis of thermal plasticity variation in Drosophila melanogaster body size.
    Lafuente E; Duneau D; Beldade P
    PLoS Genet; 2018 Sep; 14(9):e1007686. PubMed ID: 30256798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures.
    Loisel A; Isla A; Daufresne M
    J Therm Biol; 2019 Aug; 84():460-468. PubMed ID: 31466787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development time and body size in Eupolyphaga sinensis along a latitudinal gradient from China.
    Hu Y; Zhu F; Wang X; Lei C
    Environ Entomol; 2011 Feb; 40(1):1-7. PubMed ID: 22182604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule.
    Blanckenhorn WU; Berger D; Rohner PT; Schäfer MA; Akashi H; Walters RJ
    J Therm Biol; 2021 Aug; 100():103069. PubMed ID: 34503806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Within-population variation in body size plasticity in response to combined nutritional and thermal stress is partially independent from variation in development time.
    Chakraborty A; Walter GM; Monro K; Alves AN; Mirth CK; Sgrò CM
    J Evol Biol; 2023 Jan; 36(1):264-279. PubMed ID: 36208146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trait variation in extreme thermal environments under constant and fluctuating temperatures.
    Salinas S; Irvine SE; Schertzing CL; Golden SQ; Munch SB
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180177. PubMed ID: 30966956
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.