BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21676778)

  • 1. Sponge development and antiquity of animal pattern formation.
    Degnan BM; Leys SP; Larroux C
    Integr Comp Biol; 2005 Apr; 45(2):335-41. PubMed ID: 21676778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity.
    Larroux C; Fahey B; Liubicich D; Hinman VF; Gauthier M; Gongora M; Green K; Wörheide G; Leys SP; Degnan BM
    Evol Dev; 2006; 8(2):150-73. PubMed ID: 16509894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges?
    Borisenko I; Podgornaya OI; Ereskovsky AV
    Adv Protein Chem Struct Biol; 2019; 116():421-449. PubMed ID: 31036299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary origin of gastrulation: insights from sponge development.
    Nakanishi N; Sogabe S; Degnan BM
    BMC Biol; 2014 Mar; 12():26. PubMed ID: 24678663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of spiculogenesis in demosponge and hexactinellid larvae.
    Leys SP
    Microsc Res Tech; 2003 Nov; 62(4):300-11. PubMed ID: 14534904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica.
    Yuan H; Hatleberg WL; Degnan BM; Degnan SM
    Dev Growth Differ; 2022 Oct; 64(8):455-468. PubMed ID: 36155915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryogenesis in the glass sponge Oopsacas minuta: Formation of syncytia by fusion of blastomeres.
    Leys SP; Cheung E; Boury-Esnault N
    Integr Comp Biol; 2006 Apr; 46(2):104-17. PubMed ID: 21672727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early evolution of metazoan transcription factors.
    Degnan BM; Vervoort M; Larroux C; Richards GS
    Curr Opin Genet Dev; 2009 Dec; 19(6):591-9. PubMed ID: 19880309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica.
    Adamska M; Larroux C; Adamski M; Green K; Lovas E; Koop D; Richards GS; Zwafink C; Degnan BM
    Evol Dev; 2010; 12(5):494-518. PubMed ID: 20883218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral sensitivity in a sponge larva.
    Leys SP; Cronin TW; Degnan BM; Marshall JN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):199-202. PubMed ID: 11976887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.
    Fortunato SA; Adamski M; Adamska M
    Mar Genomics; 2015 Dec; 24 Pt 2():121-9. PubMed ID: 26253310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways.
    Gauthier ME; Du Pasquier L; Degnan BM
    Evol Dev; 2010; 12(5):519-33. PubMed ID: 20883219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the high gene density in the sponge NK homeobox gene cluster reflect limited regulatory capacity?
    Fahey B; Larroux C; Woodcroft BJ; Degnan BM
    Biol Bull; 2008 Jun; 214(3):205-17. PubMed ID: 18574099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan.
    Müller WE; Müller IM
    Prog Mol Subcell Biol; 2003; 37():1-33. PubMed ID: 15825638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages.
    Martindale MQ; Henry JQ
    Dev Biol; 1999 Oct; 214(2):243-57. PubMed ID: 10525332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrulation in Calcareous Sponges: In Search of Haeckel's Gastraea.
    Leys SP; Eerkes-Medrano D
    Integr Comp Biol; 2005 Apr; 45(2):342-51. PubMed ID: 21676779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental potential of ciliated cells of ceractinomorph sponge larvae.
    Bergquist PR; Glasgow K
    Exp Biol; 1986; 45(2):111-22. PubMed ID: 3699129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six major steps in animal evolution: are we derived sponge larvae?
    Nielsen C
    Evol Dev; 2008; 10(2):241-57. PubMed ID: 18315817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.
    Nakanishi N; Stoupin D; Degnan SM; Degnan BM
    Integr Comp Biol; 2015 Dec; 55(6):1018-27. PubMed ID: 25898842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.