These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 21676864)
1. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J; Zhang J; Gong Q; Xiong P; Huang H; Wu B; Lu G; Wu J; Shi Y J Biol Chem; 2011 Aug; 286(33):29218-29226. PubMed ID: 21676864 [TBL] [Abstract][Full Text] [Related]
2. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). Sun M; Larivière L; Dengl S; Mayer A; Cramer P J Biol Chem; 2010 Dec; 285(53):41597-603. PubMed ID: 20926372 [TBL] [Abstract][Full Text] [Related]
3. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. Brázda P; Krejčíková M; Kasiliauskaite A; Šmiřáková E; Klumpler T; Vácha R; Kubíček K; Štefl R J Mol Biol; 2020 Jun; 432(14):4092-4107. PubMed ID: 32439331 [TBL] [Abstract][Full Text] [Related]
4. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Connell Z; Parnell TJ; McCullough LL; Hill CP; Formosa T Nucleic Acids Res; 2022 Jan; 50(2):784-802. PubMed ID: 34967414 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. Close D; Johnson SJ; Sdano MA; McDonald SM; Robinson H; Formosa T; Hill CP J Mol Biol; 2011 May; 408(4):697-713. PubMed ID: 21419780 [TBL] [Abstract][Full Text] [Related]
6. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. Diebold ML; Loeliger E; Koch M; Winston F; Cavarelli J; Romier C J Biol Chem; 2010 Dec; 285(49):38389-98. PubMed ID: 20926373 [TBL] [Abstract][Full Text] [Related]
7. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531 [TBL] [Abstract][Full Text] [Related]
8. Structure and in vivo requirement of the yeast Spt6 SH2 domain. Dengl S; Mayer A; Sun M; Cramer P J Mol Biol; 2009 May; 389(1):211-25. PubMed ID: 19371747 [TBL] [Abstract][Full Text] [Related]
9. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. Sdano MA; Fulcher JM; Palani S; Chandrasekharan MB; Parnell TJ; Whitby FG; Formosa T; Hill CP Elife; 2017 Aug; 6():. PubMed ID: 28826505 [TBL] [Abstract][Full Text] [Related]
10. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Dronamraju R; Strahl BD Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256 [TBL] [Abstract][Full Text] [Related]
11. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Dronamraju R; Hepperla AJ; Shibata Y; Adams AT; Magnuson T; Davis IJ; Strahl BD Mol Cell; 2018 Jun; 70(6):1054-1066.e4. PubMed ID: 29932900 [TBL] [Abstract][Full Text] [Related]
12. The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions. Gopalakrishnan R; Winston F J Biol Chem; 2021 Oct; 297(4):101205. PubMed ID: 34543624 [TBL] [Abstract][Full Text] [Related]
13. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Yoh SM; Cho H; Pickle L; Evans RM; Jones KA Genes Dev; 2007 Jan; 21(2):160-74. PubMed ID: 17234882 [TBL] [Abstract][Full Text] [Related]
14. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Youdell ML; Kizer KO; Kisseleva-Romanova E; Fuchs SM; Duro E; Strahl BD; Mellor J Mol Cell Biol; 2008 Aug; 28(16):4915-26. PubMed ID: 18541663 [TBL] [Abstract][Full Text] [Related]
15. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
16. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Endoh M; Zhu W; Hasegawa J; Watanabe H; Kim DK; Aida M; Inukai N; Narita T; Yamada T; Furuya A; Sato H; Yamaguchi Y; Mandal SS; Reinberg D; Wada T; Handa H Mol Cell Biol; 2004 Apr; 24(8):3324-36. PubMed ID: 15060154 [TBL] [Abstract][Full Text] [Related]
17. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. Heo DH; Yoo I; Kong J; Lidschreiber M; Mayer A; Choi BY; Hahn Y; Cramer P; Buratowski S; Kim M J Biol Chem; 2013 Dec; 288(51):36676-90. PubMed ID: 24196955 [TBL] [Abstract][Full Text] [Related]
18. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Ellison MA; Namjilsuren S; Shirra MK; Blacksmith MS; Schusteff RA; Kerr EM; Fang F; Xiang Y; Shi Y; Arndt KM Nucleic Acids Res; 2023 Jun; 51(10):4814-4830. PubMed ID: 36928138 [TBL] [Abstract][Full Text] [Related]
19. Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly. Kasiliauskaite A; Kubicek K; Klumpler T; Zanova M; Zapletal D; Koutna E; Novacek J; Stefl R Nucleic Acids Res; 2022 Jun; 50(10):5961-5973. PubMed ID: 35640611 [TBL] [Abstract][Full Text] [Related]
20. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Krogan NJ; Kim M; Ahn SH; Zhong G; Kobor MS; Cagney G; Emili A; Shilatifard A; Buratowski S; Greenblatt JF Mol Cell Biol; 2002 Oct; 22(20):6979-92. PubMed ID: 12242279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]