These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21677474)

  • 1. Phosphoproteins and the dawn of functional phenotyping.
    Bodo J; Hsi ED
    Pathobiology; 2011; 78(2):115-21. PubMed ID: 21677474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and validation of antibodies for signal transduction immunohistochemistry.
    Bodo J; Hsi ED
    Methods Mol Biol; 2011; 717():45-53. PubMed ID: 21370023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional proteomics to identify critical proteins in signal transduction pathways.
    Yan GR; He QY
    Amino Acids; 2008 Aug; 35(2):267-74. PubMed ID: 17704892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining the tumor phosphoproteome for cancer markers.
    Lim YP
    Clin Cancer Res; 2005 May; 11(9):3163-9. PubMed ID: 15867208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an in situ phospho-protein atlas: phospho- and site-specific antibody-based spatio-temporally systematized detection of phosphorylated proteins in vivo.
    Teraishi T; Miura K
    Bioessays; 2009 Aug; 31(8):831-42. PubMed ID: 19572332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Phosphoproteomics and its application in cancer research].
    Liu JQ; He ZM
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Jul; 33(7):559-64. PubMed ID: 18667765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospho-proteomic analysis of cellular signaling.
    de Graauw M; Hensbergen P; van de Water B
    Electrophoresis; 2006 Jul; 27(13):2676-86. PubMed ID: 16739229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular distribution and phosphorylation of the nuclear localization signal binding protein, NBP60.
    Kawahire S; Tachibana T; Umemoto M; Yoneda Y; Imai N; Saito M; Ichimura T; Omata S; Horigome T
    Exp Cell Res; 1996 Feb; 222(2):385-94. PubMed ID: 8598227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.
    Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD
    J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Phosphoproteomics-based cancer molecular-targeting therapy and diagnostics].
    Ishihama Y; Wakabayashi M
    Gan To Kagaku Ryoho; 2012 Jul; 39(7):1019-25. PubMed ID: 22790034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology.
    Yan G; Li L; Tao Y; Liu S; Liu Y; Luo W; Wu Y; Tang M; Dong Z; Cao Y
    Proteomics; 2006 Mar; 6(6):1810-21. PubMed ID: 16470631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in analysis techniques of phosphoproteome].
    Yang J; Zou QM; Cai SX; Guo G; Zhu YH
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):244-8. PubMed ID: 15966331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics, oncogenic signaling and cancer research.
    Chong PK; Lee H; Kong JW; Loh MC; Wong CH; Lim YP
    Proteomics; 2008 Nov; 8(21):4370-82. PubMed ID: 18814326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of phosphoproteomics data.
    Schaab C
    Methods Mol Biol; 2011; 696():41-57. PubMed ID: 21063940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae.
    Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY
    J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer.
    Chen C; Peng J; Xia HS; Yang GF; Wu QS; Chen LD; Zeng LB; Zhang ZL; Pang DW; Li Y
    Biomaterials; 2009 May; 30(15):2912-8. PubMed ID: 19251316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry.
    Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG
    Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways.
    Kosako H; Nagano K
    Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Insulin receptor substrate (IRS)].
    Terauchi Y
    Nihon Rinsho; 2005 Aug; 63 Suppl 8():548-50. PubMed ID: 16149574
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.