These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2167754)

  • 1. [Stress analysis following femoral shaft osteotomy fixed using various plates with different rigidities in a simulation test].
    Xu X
    Zhonghua Yi Xue Za Zhi; 1990 Apr; 70(4):186-90, 14. PubMed ID: 2167754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress analyses after femoral shaft osteotomy fixed by various plates with different rigidities in simulation test.
    Xu XX; Zhang X; Liu JG; Wang JB; Shi DG; Liu SX
    Chin Med J (Engl); 1993 Feb; 106(2):127-31. PubMed ID: 8504696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biomechanical and biological bases of the third type of fracture healing].
    Xu XX
    Zhonghua Wai Ke Za Zhi; 1992 May; 30(5):308-10, 319. PubMed ID: 1289013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of distal femur fracture fixation: fixed-angle screw-plate construct versus condylar blade plate.
    Higgins TF; Pittman G; Hines J; Bachus KN
    J Orthop Trauma; 2007 Jan; 21(1):43-6. PubMed ID: 17211268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A short plate compression screw with diagonal bolts--a biomechanical evaluation performed experimentally and by numerical computation.
    Peleg E; Mosheiff R; Liebergall M; Mattan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):963-8. PubMed ID: 16893595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characteristics of locking and compression plate constructs applied dorsally to distal radius fractures.
    Boswell S; McIff TE; Trease CA; Toby EB
    J Hand Surg Am; 2007; 32(5):623-9. PubMed ID: 17481999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of stress shielding beneath a bone plate by use of a polymeric underplate. An experimental study in dogs.
    Jasmine MS; Dahners LE; Gilbert JA
    Clin Orthop Relat Res; 1989 Sep; (246):293-9. PubMed ID: 2766617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis and experimental study of reasons for breakage in the bone fracture plate during internal fixation].
    Luo M; Feng Z; Tang G; Ma H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):428-31. PubMed ID: 11605508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical comparison of various methods of stabilization of subtrochanteric fractures of the femur.
    Tencer AF; Johnson KD; Johnston DW; Gill K
    J Orthop Res; 1984; 2(3):297-305. PubMed ID: 6491820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA
    J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supracondylar femur fracture fixation: mechanical comparison of the 95 degrees condylar side plate and screw versus 95 degrees angled blade plate.
    Jaakkola JI; Lundy DW; Moore T; Jones B; Ganey TM; Hutton WC
    Acta Orthop Scand; 2002 Jan; 73(1):72-6. PubMed ID: 11928916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volar fixation for dorsally angulated extra-articular fractures of the distal radius: a biomechanical study.
    Koh S; Morris RP; Patterson RM; Kearney JP; Buford WL; Viegas SF
    J Hand Surg Am; 2006; 31(5):771-9. PubMed ID: 16713841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental study of devices for internal fixation of distal femoral fractures.
    Kolmert L; Persson BM; Romanus B
    Clin Orthop Relat Res; 1982; (171):290-9. PubMed ID: 7140081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A biomechanical study on different fixation of cortical bone plate allograft].
    Zhang R; Liao Y; Li B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Aug; 21(8):793-6. PubMed ID: 17882869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cement mixing time on the biomechanics of cement augmented plated fractures in canine femora.
    Gallimore CH; McConnell AJ; Zdero R; Koo H; McKee MD; Schemitsch EH
    J Orthop Trauma; 2008 Oct; 22(9):637-42. PubMed ID: 18827594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The biomechanical study of rotating-arm self-locking intramedullary nails in comminuted femoral shaft fractures].
    Fang Y; Fu X; Chi L; Wang G; Yang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1041-4. PubMed ID: 17121350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of less rigid internal fixation with plates.
    Akeson WH; Coutts RD; Woo SL
    Can J Surg; 1980 May; 23(3):235-9. PubMed ID: 7378954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biomechanical comparative study of three types of osteosynthesis in the treatment of supra and intercondylar fractures of the humerus in adults].
    Fornasiéri C; Staub C; Tourné Y; Rumelhart C; Saragaglia D
    Rev Chir Orthop Reparatrice Appar Mot; 1997; 83(3):237-42. PubMed ID: 9255359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.