These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21677546)

  • 1. TTF-1 expression in breast carcinoma-the chosen clone matters.
    Bisceglia M; Galliani C; Rosai J
    Am J Surg Pathol; 2011 Jul; 35(7):1087-8. PubMed ID: 21677546
    [No Abstract]   [Full Text] [Related]  

  • 2. Thyroid transcription factor-1 expression in breast carcinomas.
    Robens J; Goldstein L; Gown AM; Schnitt SJ
    Am J Surg Pathol; 2010 Dec; 34(12):1881-5. PubMed ID: 21107096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of survivin immunoexpression in the differentiation of high- and low-grade breast ductal carcinoma in situ.
    Chade MC; Piato S; Galvão MAL; Aldrighi JM; Negrini R; Mateus EF; Medeiros EM
    Einstein (Sao Paulo); 2018; 16(1):eAO4065. PubMed ID: 29694611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [New challenges of personalized therapy for breast cancer to pathologists].
    Zhong X; Luo T; Zheng H; Bu H
    Zhonghua Bing Li Xue Za Zhi; 2014 Apr; 43(4):219-21. PubMed ID: 24915809
    [No Abstract]   [Full Text] [Related]  

  • 5. Cytologic characteristics of endocrine ductal carcinoma in situ of the breast. A case report.
    Yin H; Schinella R
    Acta Cytol; 2002; 46(5):873-6. PubMed ID: 12365222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroid transcription factor-1 expression in rare cases of mammary ductal carcinoma.
    Sakurai A; Sakai Y; Yatabe Y
    Histopathology; 2011 Jul; 59(1):145-8. PubMed ID: 21771032
    [No Abstract]   [Full Text] [Related]  

  • 7. [Recent advances in studies on in-situ and invasive ductal carcinoma].
    Zhang RJ; Niu Y; Gao YX
    Zhonghua Bing Li Xue Za Zhi; 2009 Jan; 38(1):63-5. PubMed ID: 19489232
    [No Abstract]   [Full Text] [Related]  

  • 8. The estrogen receptors alpha, beta, and beta cx.
    Shaaban AM; Speirs V
    Clin Cancer Res; 2005 Nov; 11(22):8222; author reply 8222-3. PubMed ID: 16299256
    [No Abstract]   [Full Text] [Related]  

  • 9. No increased Ki67 expression in ductal carcinoma in situ associated with invasive breast cancer.
    Hoque A; Menter DG; Sahin AA; Sneige N; Lippman SM
    Cancer Epidemiol Biomarkers Prev; 2001 Feb; 10(2):153-4. PubMed ID: 11219775
    [No Abstract]   [Full Text] [Related]  

  • 10. Significant expression of thyroid transcription factor-1 in pulmonary squamous cell carcinoma detected by SPT24 monoclonal antibody and CSA-II system.
    Kashima K; Hashimoto H; Nishida H; Arakane M; Yada N; Daa T; Yokoyama S
    Appl Immunohistochem Mol Morphol; 2014; 22(2):119-24. PubMed ID: 23531851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cystic hypersecretory carcinoma with microinvasive carcinoma and cystic hypersecretory hyperplasia of breast: report of a case].
    Chen DB; Kan X
    Zhonghua Bing Li Xue Za Zhi; 2010 Jan; 39(1):54-5. PubMed ID: 20388402
    [No Abstract]   [Full Text] [Related]  

  • 12. Estrogen receptor in breast ductal carcinoma in situ: good cop, bad cop?
    DeCensi A; Pruneri G; Guerrieri-Gonzaga A
    J Clin Oncol; 2012 Apr; 30(12):1384-6. PubMed ID: 22393083
    [No Abstract]   [Full Text] [Related]  

  • 13. Primary small cell carcinoma of the breast with TTF-1 and neuroendocrine marker expressing carcinoma in situ.
    Christie M; Chin-Lenn L; Watts MM; Tsui AE; Buchanan MR
    Int J Clin Exp Pathol; 2010 Jun; 3(6):629-33. PubMed ID: 20661411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinvasive (T1mic) lobular carcinoma of the breast: clinicopathologic profile of 16 cases.
    Ross DS; Hoda SA
    Am J Surg Pathol; 2011 May; 35(5):750-6. PubMed ID: 21415700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TTF-1 expression in breast carcinoma: an unusual but real phenomenon.
    Ni YB; Tsang JY; Shao MM; Chan SK; Tong J; To KF; Tse GM
    Histopathology; 2014 Mar; 64(4):504-11. PubMed ID: 24111789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AgNOR analysis of atypical ductal hyperplasia and intraductal carcinoma of the breast.
    Guski H; Hufnagl P; Kaufmann O; Krause M; Winzer KJ
    Anal Quant Cytol Histol; 2000 Jun; 22(3):206-12. PubMed ID: 10872036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinicopathologic correlation of cancer stem cell markers CD44, CD24, VEGF and HIF-1α in ductal carcinoma in situ and invasive ductal carcinoma of breast: an immunohistochemistry-based pilot study.
    Wang Z; Shi Q; Wang Z; Gu Y; Shen Y; Sun M; Deng M; Zhang H; Fang J; Zhang S; Xie F
    Pathol Res Pract; 2011 Aug; 207(8):505-13. PubMed ID: 21802218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regarding "Co-expression of SNAIL and TWIST determines prognosis in estrogen receptor-positive early breast cancer patients".
    Yuen HF; Zhang SD; Wong AS; McCrudden CM; Huang YH; Chan KY; El-Tanani M; Khoo US
    Breast Cancer Res Treat; 2012 Jan; 131(1):351-2. PubMed ID: 22037786
    [No Abstract]   [Full Text] [Related]  

  • 19. Increase of GKLF messenger RNA and protein expression during progression of breast cancer.
    Foster KW; Frost AR; McKie-Bell P; Lin CY; Engler JA; Grizzle WE; Ruppert JM
    Cancer Res; 2000 Nov; 60(22):6488-95. PubMed ID: 11103818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ.
    Helczynska K; Kronblad A; Jögi A; Nilsson E; Beckman S; Landberg G; Påhlman S
    Cancer Res; 2003 Apr; 63(7):1441-4. PubMed ID: 12670886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.