These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21677558)

  • 21. Sepsis-induced urinary concentration defect is related to nitric oxide-dependent inactivation of TonEBP/NFAT5, which downregulates renal medullary solute transport proteins and aquaporin-2.
    Küper C; Fraek ML; Müller HH; Beck FX; Neuhofer W
    Crit Care Med; 2012 Jun; 40(6):1887-95. PubMed ID: 22610191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aldosterone receptors in rabbit renal cortex and red medulla.
    Marver D
    Endocrinology; 1980 Feb; 106(2):611-8. PubMed ID: 7353530
    [No Abstract]   [Full Text] [Related]  

  • 24. Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption.
    Evans RG; Goddard D; Eppel GA; O'Connor PM
    Clin Exp Pharmacol Physiol; 2011 Apr; 38(4):247-54. PubMed ID: 21306412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen and carbon dioxide tensions in the canine kidney during arterial occlusion and hemorrhagic hypotension.
    Nelimarkka O; Niinikoski J
    Surg Gynecol Obstet; 1984 Jan; 158(1):27-32. PubMed ID: 6419359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal effects of nitric oxide in endotoxemia.
    Cohen RI; Hassell AM; Marzouk K; Marini C; Liu SF; Scharf SM
    Am J Respir Crit Care Med; 2001 Nov; 164(10 Pt 1):1890-5. PubMed ID: 11734442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of renal cortical and Medullary tissue oxygenation in hemorrhagic shock.
    Nelimarkka O; Halkola L; Niinikoski J
    Acta Chir Scand; 1982; 148(3):213-9. PubMed ID: 7136420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat.
    Yamaguchi N; Jesmin S; Zaedi S; Shimojo N; Maeda S; Gando S; Koyama A; Miyauchi T
    Peptides; 2006 Sep; 27(9):2258-70. PubMed ID: 16725227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loop diuretics bind to distinct receptors in renal medulla and cortex.
    Giesen-Crouse E; Fandeleur P; Schmidt M; Schwartz J; Imbs JL
    J Hypertens Suppl; 1985 Dec; 3(3):S211-3. PubMed ID: 2856706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro citrate synthesis by the dog kidney. Investigations with cortex, red and white medulla slices.
    Martin M; Ferrier B; Pellet M
    J Physiol (Paris); 1979; 75(7):749-53. PubMed ID: 547070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of chlorpropamide on the control of adenosine 3',5'-monophosphate metabolism in rat renal cortex and medulla.
    Leichter SB; Chase LR
    Endocrinology; 1978 Mar; 102(3):785-90. PubMed ID: 217601
    [No Abstract]   [Full Text] [Related]  

  • 33. Existence of renal alpha 1- and alpha 2-adrenoceptors in the human kidney: radioligand binding study in membranes from the human renal cortex and medulla.
    Umemura S; Yasuda G; Uchino K; Shindo T; Ishikawa Y; Toya Y; Kaneko Y
    J Hypertens Suppl; 1986 Dec; 4(6):S222-5. PubMed ID: 3039091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia.
    Heemskerk S; van Koppen A; van den Broek L; Poelen GJ; Wouterse AC; Dijkman HB; Russel FG; Masereeuw R
    Pflugers Arch; 2007 May; 454(2):321-34. PubMed ID: 17285300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Binding site of 125I-Tyr8-bradykinin in the rat kidney].
    Hoshima M; Abe K; Yoshinaga K
    Nihon Jinzo Gakkai Shi; 1983 Jul; 25(7):910-2. PubMed ID: 6663882
    [No Abstract]   [Full Text] [Related]  

  • 36. Comment on Legrand et al.: The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats.
    Ji MH; Sun J; Yang JJ; Liu YX; Peng YG
    Intensive Care Med; 2012 Feb; 38(2):335; author reply 336. PubMed ID: 22147113
    [No Abstract]   [Full Text] [Related]  

  • 37. Exogenous superoxide dismutase uptake by the myocardium and kidney in an ischaemic reperfusion model in dogs.
    Kónya L; Fülöp A; Bártfai I; Szénási G
    Acta Med Hung; 1991; 48(1-2):87-94. PubMed ID: 1813862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renal blood clotting and fibrinolytic factors.
    Sokratov NV; Safronova TA
    Hum Physiol; 1979; 5(5):817-22. PubMed ID: 551064
    [No Abstract]   [Full Text] [Related]  

  • 39. Further studies on biosynthesis of erythropoietin.
    Bandyopadhyay R; Datta AG
    Indian J Biochem Biophys; 1981 Aug; 18(4):241-4. PubMed ID: 7327602
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of lung recruitment maneuvers on splanchnic organ perfusion during endotoxin-induced pulmonary arterial hypertension.
    Daudel F; Gorrasi J; Bracht H; Brandt S; Krejci V; Jakob SM; Takala J; Rothen HU
    Shock; 2010 Nov; 34(5):488-94. PubMed ID: 20357696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.