BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 21677773)

  • 1. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease.
    Bobrowska A; Paganetti P; Matthias P; Bates GP
    PLoS One; 2011; 6(6):e20696. PubMed ID: 21677773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease.
    Ragot A; Pietropaolo S; Vincent J; Delage P; Zhang H; Allinquant B; Leinekugel X; Fischer A; Cho YH
    Brain Behav; 2015 Sep; 5(9):e00361. PubMed ID: 26445700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo.
    Bobrowska A; Donmez G; Weiss A; Guarente L; Bates G
    PLoS One; 2012; 7(4):e34805. PubMed ID: 22511966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice.
    Gharami K; Xie Y; An JJ; Tonegawa S; Xu B
    J Neurochem; 2008 Apr; 105(2):369-79. PubMed ID: 18086127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation.
    Dompierre JP; Godin JD; Charrin BC; Cordelières FP; King SJ; Humbert S; Saudou F
    J Neurosci; 2007 Mar; 27(13):3571-83. PubMed ID: 17392473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients.
    Seo H; Kim W; Isacson O
    Hum Mol Genet; 2008 Oct; 17(20):3144-53. PubMed ID: 18640989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease.
    Mielcarek M; Benn CL; Franklin SA; Smith DL; Woodman B; Marks PA; Bates GP
    PLoS One; 2011; 6(11):e27746. PubMed ID: 22140466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.
    Ginés S; Bosch M; Marco S; Gavaldà N; Díaz-Hernández M; Lucas JJ; Canals JM; Alberch J
    Eur J Neurosci; 2006 Feb; 23(3):649-58. PubMed ID: 16487146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.
    Mielcarek M; Landles C; Weiss A; Bradaia A; Seredenina T; Inuabasi L; Osborne GF; Wadel K; Touller C; Butler R; Robertson J; Franklin SA; Smith DL; Park L; Marks PA; Wanker EE; Olson EN; Luthi-Carter R; van der Putten H; Beaumont V; Bates GP
    PLoS Biol; 2013 Nov; 11(11):e1001717. PubMed ID: 24302884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism.
    Spires TL; Grote HE; Varshney NK; Cordery PM; van Dellen A; Blakemore C; Hannan AJ
    J Neurosci; 2004 Mar; 24(9):2270-6. PubMed ID: 14999077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease.
    Li E; Choi J; Sim HR; Kim J; Jun JH; Kyung J; Ha N; Kim S; Ryu KH; Chung SS; Kim HS; Lee S; Seol W; Song J
    BMB Rep; 2023 Mar; 56(2):178-183. PubMed ID: 36593104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease.
    Moumné L; Campbell K; Howland D; Ouyang Y; Bates GP
    PLoS One; 2012; 7(2):e31080. PubMed ID: 22347433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS.
    Taes I; Timmers M; Hersmus N; Bento-Abreu A; Van Den Bosch L; Van Damme P; Auwerx J; Robberecht W
    Hum Mol Genet; 2013 May; 22(9):1783-90. PubMed ID: 23364049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors.
    Gold WA; Lacina TA; Cantrill LC; Christodoulou J
    J Mol Med (Berl); 2015 Jan; 93(1):63-72. PubMed ID: 25209898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease.
    Jia H; Pallos J; Jacques V; Lau A; Tang B; Cooper A; Syed A; Purcell J; Chen Y; Sharma S; Sangrey GR; Darnell SB; Plasterer H; Sadri-Vakili G; Gottesfeld JM; Thompson LM; Rusche JR; Marsh JL; Thomas EA
    Neurobiol Dis; 2012 May; 46(2):351-61. PubMed ID: 22590724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease.
    Benn CL; Butler R; Mariner L; Nixon J; Moffitt H; Mielcarek M; Woodman B; Bates GP
    PLoS One; 2009 Jun; 4(6):e5747. PubMed ID: 19484127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation.
    Liu Y; Peng L; Seto E; Huang S; Qiu Y
    J Biol Chem; 2012 Aug; 287(34):29168-74. PubMed ID: 22778253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes.
    Woodman B; Butler R; Landles C; Lupton MK; Tse J; Hockly E; Moffitt H; Sathasivam K; Bates GP
    Brain Res Bull; 2007 Apr; 72(2-3):83-97. PubMed ID: 17352931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains.
    Narayan P; Reid S; Scotter EL; McGregor AL; Mehrabi NF; Singh-Bains MK; Glass M; Faull RLM; Snell RG; Dragunow M
    Neurobiol Dis; 2020 Dec; 146():105092. PubMed ID: 32979507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model.
    Peng Q; Masuda N; Jiang M; Li Q; Zhao M; Ross CA; Duan W
    Exp Neurol; 2008 Mar; 210(1):154-63. PubMed ID: 18096160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.