These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 21677822)

  • 41. Faecal steroids and colorectal carcinogenesis.
    Owen RW
    Scand J Gastroenterol Suppl; 1997; 222():76-82. PubMed ID: 9145454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiation-induced DNA damage and delayed induced genomic instability.
    Suzuki K; Ojima M; Kodama S; Watanabe M
    Oncogene; 2003 Oct; 22(45):6988-93. PubMed ID: 14557802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A sucrose-rich diet induces mutations in the rat colon.
    Dragsted LO; Daneshvar B; Vogel U; Autrup HN; Wallin H; Risom L; Møller P; Mølck AM; Hansen M; Poulsen HE; Loft S
    Cancer Res; 2002 Aug; 62(15):4339-45. PubMed ID: 12154038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of bile acids in colon carcinogenesis.
    Nguyen TT; Ung TT; Kim NH; Jung YD
    World J Clin Cases; 2018 Nov; 6(13):577-588. PubMed ID: 30430113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cancer-associated mutations in the condensin II subunit CAPH2 cause genomic instability through telomere dysfunction and anaphase chromosome bridges.
    Weyburne E; Bosco G
    J Cell Physiol; 2021 May; 236(5):3579-3598. PubMed ID: 33078399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic instability and colorectal cancer.
    Grady WM; Markowitz S
    Curr Opin Gastroenterol; 2000 Jan; 16(1):62-7. PubMed ID: 17024019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus.
    Dvorak K; Payne CM; Chavarria M; Ramsey L; Dvorakova B; Bernstein H; Holubec H; Sampliner RE; Guy N; Condon A; Bernstein C; Green SB; Prasad A; Garewal HS
    Gut; 2007 Jun; 56(6):763-71. PubMed ID: 17145738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biphasic regulation of cell death and survival by hydrophobic bile acids in HCT116 cells.
    Yui S; Kanamoto R; Saeki T
    Nutr Cancer; 2009; 61(3):374-80. PubMed ID: 19373611
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of bile acids in the neoplastic progression of Barrett's esophagus - a short representative overview.
    Jürgens S; Meyer F; Spechler SJ; Souza R
    Z Gastroenterol; 2012 Sep; 50(9):1028-34. PubMed ID: 22965634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colon carcinogenesis in inflammatory bowel disease.
    Itzkowitz SH; Greenwald B; Meltzer SJ
    Inflamm Bowel Dis; 1995; 1(2):142-58. PubMed ID: 23282306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of dietary folate on genomic and p53-specific DNA methylation in rat colon.
    Sohn KJ; Stempak JM; Reid S; Shirwadkar S; Mason JB; Kim YI
    Carcinogenesis; 2003 Jan; 24(1):81-90. PubMed ID: 12538352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers.
    Bartsch H; Nair J
    Cancer Detect Prev; 2002; 26(4):308-12. PubMed ID: 12430635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.
    Luukkonen J; Liimatainen A; Juutilainen J; Naarala J
    Mutat Res; 2014 Feb; 760():33-41. PubMed ID: 24374227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of hTERT on metal ion-induced genomic instability.
    Glaviano A; Nayak V; Cabuy E; Baird DM; Yin Z; Newson R; Ladon D; Rubio MA; Slijepcevic P; Lyng F; Mothersill C; Case CP
    Oncogene; 2006 Jun; 25(24):3424-35. PubMed ID: 16449970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomic instability and carcinogenesis: an update.
    Abdel-Rahman WM
    Curr Genomics; 2008 Dec; 9(8):535-41. PubMed ID: 19516960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protective effects of glycoursodeoxycholic acid in Barrett's esophagus cells.
    Goldman A; Condon A; Adler E; Minnella M; Bernstein C; Bernstein H; Dvorak K
    Dis Esophagus; 2010 Feb; 23(2):83-93. PubMed ID: 19549210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholangiocytes via oxidative DNA damage.
    Komichi D; Tazuma S; Nishioka T; Hyogo H; Chayama K
    Free Radic Biol Med; 2005 Dec; 39(11):1418-27. PubMed ID: 16274877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emerging roles of centrosomal amplification and genomic instability in cancer.
    Emdad L; Sarkar D; Su ZZ; Fisher PB
    Front Biosci; 2005 Jan; 10():728-42. PubMed ID: 15569613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bile acid: a potential inducer of colon cancer stem cells.
    Farhana L; Nangia-Makker P; Arbit E; Shango K; Sarkar S; Mahmud H; Hadden T; Yu Y; Majumdar AP
    Stem Cell Res Ther; 2016 Dec; 7(1):181. PubMed ID: 27908290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA adduct formation and oxidative stress in colon and liver of Big Blue rats after dietary exposure to diesel particles.
    Dybdahl M; Risom L; Møller P; Autrup H; Wallin H; Vogel U; Bornholdt J; Daneshvar B; Dragsted LO; Weimann A; Poulsen HE; Loft S
    Carcinogenesis; 2003 Nov; 24(11):1759-66. PubMed ID: 12919963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.