These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21677942)

  • 1. Infrared spectromicroscopy of biochemistry in functional single cells.
    Quaroni L; Zlateva T
    Analyst; 2011 Aug; 136(16):3219-32. PubMed ID: 21677942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-Transform Infrared spectromicroscopy.
    Goff KL; Quaroni L; Wilson KE
    Analyst; 2009 Nov; 134(11):2216-9. PubMed ID: 19838406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy.
    Holman HY; Miles R; Hao Z; Wozei E; Anderson LM; Yang H
    Anal Chem; 2009 Oct; 81(20):8564-70. PubMed ID: 19775125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin.
    Vogel R; Siebert F
    Biopolymers; 2003; 72(3):133-48. PubMed ID: 12722110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Barrett esophagus and esophageal adenocarcinoma by Fourier-transform infrared microscopy.
    Quaroni L; Casson AG
    Analyst; 2009 Jun; 134(6):1240-6. PubMed ID: 19475154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the structure and photocycle of PR 2D crystals with CD and FTIR spectroscopy.
    Schäfer G; Shastri S; Verhoefen MK; Vogel V; Glaubitz C; Wachtveitl J; Mäntele W
    Photochem Photobiol; 2009; 85(2):529-34. PubMed ID: 19267874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of weak absorption changes from molecular events in time-resolved FT-IR spectromicroscopy measurements of single functional cells.
    Quaroni L; Zlateva T; Normand E
    Anal Chem; 2011 Oct; 83(19):7371-80. PubMed ID: 21854018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use and misuse of FTIR spectroscopy in the determination of protein structure.
    Jackson M; Mantsch HH
    Crit Rev Biochem Mol Biol; 1995; 30(2):95-120. PubMed ID: 7656562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy.
    Holman HY; Martin MC; Blakely EA; Bjornstad K; McKinney WR
    Biopolymers; 2000; 57(6):329-35. PubMed ID: 11054652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-channel microfluidic membrane device for long-term FT-IR spectromicroscopy of live adherent cells.
    Loutherback K; Chen L; Holman HY
    Anal Chem; 2015; 87(9):4601-6. PubMed ID: 25886198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective surface patterning with an electric discharge in the fabrication of microfluidic structures.
    Suni NM; Haapala M; Mäkinen A; Sainiemi L; Franssila S; Färm E; Puukilainen E; Ritala M; Kostiainen R
    Angew Chem Int Ed Engl; 2008; 47(39):7442-5. PubMed ID: 18756570
    [No Abstract]   [Full Text] [Related]  

  • 15. High spatial resolution analysis of fungal cell biochemistry--bridging the analytical gap using synchrotron FTIR spectromicroscopy.
    Kaminskyj S; Jilkine K; Szeghalmi A; Gough K
    FEMS Microbiol Lett; 2008 Jul; 284(1):1-8. PubMed ID: 18422624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
    Muders V; Kerruth S; Lórenz-Fonfría VA; Bamann C; Heberle J; Schlesinger R
    FEBS Lett; 2014 Jun; 588(14):2301-6. PubMed ID: 24859039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy.
    Isenor M; Kaminskyj SG; Rodriguez RJ; Redman RS; Gough KM
    Analyst; 2010 Dec; 135(12):3249-54. PubMed ID: 20963233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices.
    Hui AY; Wang G; Lin B; Chan WT
    Lab Chip; 2005 Oct; 5(10):1173-7. PubMed ID: 16175276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.