These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21678397)

  • 1. Physiological and anatomical studies of associative learning: Convergence with learning studies of W.T. Greenough.
    Galvez R; Nicholson DA; Disterhoft JF
    Dev Psychobiol; 2011 Jul; 53(5):489-504. PubMed ID: 21678397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building new motor responses: eyelid conditioning revisited.
    Delgado-García JM; Gruart A
    Trends Neurosci; 2006 Jun; 29(6):330-8. PubMed ID: 16713636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neocortical synaptic proliferation following forebrain-dependent trace associative learning.
    Chau LS; Davis AS; Galvez R
    Behav Neurosci; 2013 Apr; 127(2):285-92. PubMed ID: 23398434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals.
    Gruart A; Leal-Campanario R; López-Ramos JC; Delgado-García JM
    Neurobiol Learn Mem; 2015 Oct; 124():3-18. PubMed ID: 25916668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal correlates of cross-modal transfer in the cerebellum and pontine nuclei.
    Campolattaro MM; Kashef A; Lee I; Freeman JH
    J Neurosci; 2011 Mar; 31(11):4051-62. PubMed ID: 21411647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and characterization of an essential associative memory trace in the mammalian brain.
    Poulos AM; Thompson RF
    Brain Res; 2015 Sep; 1621():252-9. PubMed ID: 25449891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associative learning elicits the formation of multiple-synapse boutons.
    Geinisman Y; Berry RW; Disterhoft JF; Power JM; Van der Zee EA
    J Neurosci; 2001 Aug; 21(15):5568-73. PubMed ID: 11466428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurogenesis, learning and associative strength.
    Waddell J; Shors TJ
    Eur J Neurosci; 2008 Jun; 27(11):3020-8. PubMed ID: 18588540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits.
    Zhen X; Du W; Romano AG; Friedman E; Harvey JA
    J Neurosci; 2001 Aug; 21(15):5513-9. PubMed ID: 11466422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hippocampal manipulations on the classically conditioned nictitating membrane response: simulations by an attentional-associative model.
    Schmajuk NA; Moore JW
    Behav Brain Res; 1989 Mar; 32(2):173-89. PubMed ID: 2923660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of NMDA receptor NR2B subunit to synaptic plasticity during associative learning in behaving rats.
    Valenzuela-Harrington M; Gruart A; Delgado-García JM
    Eur J Neurosci; 2007 Feb; 25(3):830-6. PubMed ID: 17328778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What's elementary about associative learning?
    Wasserman EA; Miller RR
    Annu Rev Psychol; 1997; 48():573-607. PubMed ID: 9046569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals.
    Delgado-García JM; Gruart A
    Adv Exp Med Biol; 2017; 1015():75-93. PubMed ID: 29080022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning.
    Freeman JH; Steinmetz AB
    Learn Mem; 2011; 18(10):666-77. PubMed ID: 21969489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals.
    Mauk MD; Ruiz BP
    Behav Neurosci; 1992 Aug; 106(4):666-81. PubMed ID: 1503659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.
    Chau LS; Prakapenka A; Fleming SA; Davis AS; Galvez R
    Neurobiol Learn Mem; 2013 Nov; 106():127-33. PubMed ID: 23891993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior.
    Clark RE; Zhang AA; Lavond DG
    Behav Neurosci; 1992 Dec; 106(6):879-88. PubMed ID: 1335267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal activity during classical discrimination--reversal eyeblink conditioning in rabbits.
    Miller DP; Steinmetz JE
    Behav Neurosci; 1997 Feb; 111(1):70-9. PubMed ID: 9109625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning.
    Goosens KA; Maren S
    Hippocampus; 2002; 12(5):592-9. PubMed ID: 12440575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of the conditioned eyeblink response in rats: acquisition or expression?
    Stanton ME; Fox GD; Carter CS
    Neuropharmacology; 1998; 37(4-5):623-32. PubMed ID: 9705002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.