These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21678397)

  • 21. Conditioning using a cerebral cortical conditioned stimulus is dependent on the cerebellum and brain stem circuitry.
    Knowlton BJ; Thompson RF
    Behav Neurosci; 1992 Jun; 106(3):509-17. PubMed ID: 1616617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of interpositus nucleus in eyelid conditioned responses.
    Delgado-García JM; Gruart A
    Cerebellum; 2002 Dec; 1(4):289-308. PubMed ID: 12879967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Feb; 106(1):81-105. PubMed ID: 1554440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-mediated events in associative learning.
    Disterhoft JF
    NIDA Res Monogr; 1990; 97():94-115. PubMed ID: 2174125
    [No Abstract]   [Full Text] [Related]  

  • 25. Eyeblink conditioning in 12-day-old rats using pontine stimulation as the conditioned stimulus.
    Campolattaro MM; Freeman JH
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8120-3. PubMed ID: 18523018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning.
    Bakin JS; South DA; Weinberger NM
    Behav Neurosci; 1996 Oct; 110(5):905-13. PubMed ID: 8918994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus.
    Sears LL; Steinmetz JE
    Behav Neurosci; 1990 Oct; 104(5):681-92. PubMed ID: 2244977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning.
    Joiner MlA ; Griffith LC
    J Neurosci; 1997 Dec; 17(23):9384-91. PubMed ID: 9364084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embarrassed, but not depressed: eye opening lessons for cerebellar learning.
    Carey M; Lisberger S
    Neuron; 2002 Jul; 35(2):223-6. PubMed ID: 12160741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice.
    Gruart A; Delgado-García JM
    Genes Brain Behav; 2007 Jun; 6 Suppl 1():24-31. PubMed ID: 17543036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebellar plasticity and associative memories are controlled by perineuronal nets.
    Carulli D; Broersen R; de Winter F; Muir EM; Mešković M; de Waal M; de Vries S; Boele HJ; Canto CB; De Zeeuw CI; Verhaagen J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6855-6865. PubMed ID: 32152108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related deficits in a forebrain-dependent task, trace-eyeblink conditioning.
    Galvez R; Cua S; Disterhoft JF
    Neurobiol Aging; 2011 Oct; 32(10):1915-22. PubMed ID: 20018411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning.
    Kasugai Y; Vogel E; Hörtnagl H; Schönherr S; Paradiso E; Hauschild M; Göbel G; Milenkovic I; Peterschmitt Y; Tasan R; Sperk G; Shigemoto R; Sieghart W; Singewald N; Lüthi A; Ferraguti F
    Neuron; 2019 Nov; 104(4):781-794.e4. PubMed ID: 31543297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breathe out and learn: Expiration-contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning.
    Waselius T; Wikgren J; Penttonen M; Nokia MS
    Psychophysiology; 2019 Sep; 56(9):e13387. PubMed ID: 31026071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex.
    Porter JT; Sepulveda-Orengo MT
    Neurobiol Learn Mem; 2020 Mar; 169():107117. PubMed ID: 31765801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation.
    Loh R; Collins S; Galvez R
    Behav Brain Res; 2017 Sep; 335():145-150. PubMed ID: 28802836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Associative and non-associative blinking in classically conditioned adult rats.
    Lindquist DH; Vogel RW; Steinmetz JE
    Physiol Behav; 2009 Mar; 96(3):399-411. PubMed ID: 19071146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Cognitive Model Based on Neuromodulated Plasticity.
    Huang J; Ruan X; Yu N; Fan Q; Li J; Cai J
    Comput Intell Neurosci; 2016; 2016():4296356. PubMed ID: 27872638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurotransmitter release during delay eyeblink classical conditioning: role of norepinephrine in consolidation and effect of age.
    Paredes DA; Cartford MC; Catlow BJ; Samec A; Avilas M; George A; Schlunck A; Small B; Bickford PC
    Neurobiol Learn Mem; 2009 Oct; 92(3):267-82. PubMed ID: 18809505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.