These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 21678512)
1. A biomimetic principle for the chemical modification of metal surfaces: synthesis of tripodal catecholates as analogues of siderophores and mussel adhesion proteins. Franzmann E; Khalil F; Weidmann C; Schröder M; Rohnke M; Janek J; Smarsly BM; Maison W Chemistry; 2011 Jul; 17(31):8596-603. PubMed ID: 21678512 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel. Khalil F; Franzmann E; Ramcke J; Dakischew O; Lips KS; Reinhardt A; Heisig P; Maison W Colloids Surf B Biointerfaces; 2014 May; 117():185-92. PubMed ID: 24632391 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of enterobactin to metal oxides and the role of siderophores in bacterial adhesion to metals. Upritchard HG; Yang J; Bremer PJ; Lamont IL; McQuillan AJ Langmuir; 2011 Sep; 27(17):10587-96. PubMed ID: 21744856 [TBL] [Abstract][Full Text] [Related]
4. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Dalsin JL; Hu BH; Lee BP; Messersmith PB J Am Chem Soc; 2003 Apr; 125(14):4253-8. PubMed ID: 12670247 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic anchor for surface-initiated polymerization from metal substrates. Fan X; Lin L; Dalsin JL; Messersmith PB J Am Chem Soc; 2005 Nov; 127(45):15843-7. PubMed ID: 16277527 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of tripodal catecholates and their immobilization on zinc oxide nanoparticles. Klitsche F; Ramcke J; Migenda J; Hensel A; Vossmeyer T; Weller H; Gross S; Maison W Beilstein J Org Chem; 2015; 11():678-86. PubMed ID: 26124871 [TBL] [Abstract][Full Text] [Related]
7. Application of the empirical force field to macrocyclic ion carriers, siderophores, and biomimetic analogs. Felder CE; Shanzer A Biopolymers; 2003 Mar; 68(3):407-21. PubMed ID: 12601799 [TBL] [Abstract][Full Text] [Related]
8. Toward iron sensors: bioinspired tripods based on fluorescent phenol-oxazoline coordination sites. Kikkeri R; Traboulsi H; Humbert N; Gumienna-Kontecka E; Arad-Yellin R; Melman G; Elhabiri M; Albrecht-Gary AM; Shanzer A Inorg Chem; 2007 Apr; 46(7):2485-97. PubMed ID: 17326624 [TBL] [Abstract][Full Text] [Related]
9. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834 [TBL] [Abstract][Full Text] [Related]
10. Surface modifications based on the cyanobacterial siderophore anachelin: from structure to functional biomaterials design. Gademann K; Kobylinska J; Wach JY; Woods TM Biometals; 2009 Aug; 22(4):595-604. PubMed ID: 19350397 [TBL] [Abstract][Full Text] [Related]
11. TAME5OX, abiotic siderophore analogue to enterobactin involving 8-hydroxyquinoline subunits: thermodynamic and photophysical studies. Akbar R; Baral M; Kanungo BK Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():246-59. PubMed ID: 25703371 [TBL] [Abstract][Full Text] [Related]
12. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Ito Y; Hasuda H; Sakuragi M; Tsuzuki S Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. von der Mark K; Park J; Bauer S; Schmuki P Cell Tissue Res; 2010 Jan; 339(1):131-53. PubMed ID: 19898872 [TBL] [Abstract][Full Text] [Related]
14. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion. Damodaran G; Collighan R; Griffin M; Navsaria H; Pandit A Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. Pan G; Sun S; Zhang W; Zhao R; Cui W; He F; Huang L; Lee SH; Shea KJ; Shi Q; Yang H J Am Chem Soc; 2016 Nov; 138(45):15078-15086. PubMed ID: 27778505 [TBL] [Abstract][Full Text] [Related]
16. Covalent surface modification of titanium oxide with different adhesive peptides: surface characterization and osteoblast-like cell adhesion. Dettin M; Bagno A; Gambaretto R; Iucci G; Conconi MT; Tuccitto N; Menti AM; Grandi C; Di Bello C; Licciardello A; Polzonetti G J Biomed Mater Res A; 2009 Jul; 90(1):35-45. PubMed ID: 18481788 [TBL] [Abstract][Full Text] [Related]
17. Reversible layer-by-layer deposition on solid substrates inspired by mussel byssus cuticle. Kim S; Kim DS; Kang SM Chem Asian J; 2014 Jan; 9(1):63-6. PubMed ID: 24151163 [TBL] [Abstract][Full Text] [Related]
18. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Hori N; Iwasa F; Ueno T; Takeuchi K; Tsukimura N; Yamada M; Hattori M; Yamamoto A; Ogawa T Dent Mater; 2010 Apr; 26(4):275-87. PubMed ID: 20006380 [TBL] [Abstract][Full Text] [Related]
19. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
20. Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. Maier GP; Butler A J Biol Inorg Chem; 2017 Jul; 22(5):739-749. PubMed ID: 28364222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]