These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21678550)
1. Scanning tunneling luminescence of individual CdSe nanowires. Lutz T; Kabakchiev A; Dufaux T; Wolpert C; Wang Z; Burghard M; Kuhnke K; Kern K Small; 2011 Aug; 7(16):2396-400. PubMed ID: 21678550 [TBL] [Abstract][Full Text] [Related]
2. Diameter scaling of the optical band gap in individual CdSe nanowires. Myalitsin A; Strelow C; Wang Z; Li Z; Kipp T; Mews A ACS Nano; 2011 Oct; 5(10):7920-7. PubMed ID: 21859079 [TBL] [Abstract][Full Text] [Related]
7. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities. van Vugt LK; Piccione B; Cho CH; Aspetti C; Wirshba AD; Agarwal R J Phys Chem A; 2011 Apr; 115(16):3827-33. PubMed ID: 21214218 [TBL] [Abstract][Full Text] [Related]
8. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. Mahler B; Lequeux N; Dubertret B J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669 [TBL] [Abstract][Full Text] [Related]
9. Cadmium selenide quantum wires and the transition from 3D to 2D confinement. Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740 [TBL] [Abstract][Full Text] [Related]
10. Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: inorganic-organic hybrid semiconductor nanowires. Fan L; Song H; Zhao H; Pan G; Yu H; Bai X; Li S; Lei Y; Dai Q; Qin R; Wang T; Dong B; Zheng Z; Ren X J Phys Chem B; 2006 Jul; 110(26):12948-53. PubMed ID: 16805597 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure control of CdSe nanocrystals in growth and nucleation: dominating effects of surface versus interior structure. Gao Y; Peng X J Am Chem Soc; 2014 May; 136(18):6724-32. PubMed ID: 24712700 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers. Sun XH; Lam S; Sham TK; Heigl F; Jürgensen A; Wong NB J Phys Chem B; 2005 Mar; 109(8):3120-5. PubMed ID: 16851331 [TBL] [Abstract][Full Text] [Related]
15. Thermal conductivity of zinc blende and wurtzite CdSe nanostructures. Yang J; Tang H; Zhao Y; Zhang Y; Li J; Ni Z; Chen Y; Xu D Nanoscale; 2015 Oct; 7(38):16071-8. PubMed ID: 26372172 [TBL] [Abstract][Full Text] [Related]
16. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires. Li D; Wang Z; Gao F Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Kan S; Mokari T; Rothenberg E; Banin U Nat Mater; 2003 Mar; 2(3):155-8. PubMed ID: 12612671 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. Nan W; Niu Y; Qin H; Cui F; Yang Y; Lai R; Lin W; Peng X J Am Chem Soc; 2012 Dec; 134(48):19685-93. PubMed ID: 23131103 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires. Corfdir P; Van Hattem B; Uccelli E; Conesa-Boj S; Lefebvre P; Fontcuberta i Morral A; Phillips RT Nano Lett; 2013 Nov; 13(11):5303-10. PubMed ID: 24134509 [TBL] [Abstract][Full Text] [Related]