These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 21678967)
1. Ab initio study of the decomposition of 2,5-dimethylfuran. Simmie JM; Metcalfe WK J Phys Chem A; 2011 Aug; 115(32):8877-88. PubMed ID: 21678967 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of the reactions of OH radicals with 2- and 3-methylfuran, 2,3- and 2,5-dimethylfuran, and E- and Z-3-hexene-2,5-dione, and products of OH + 2,5-dimethylfuran. Aschmann SM; Nishino N; Arey J; Atkinson R Environ Sci Technol; 2011 Mar; 45(5):1859-65. PubMed ID: 21309547 [TBL] [Abstract][Full Text] [Related]
3. Theoretical study of the thermal decomposition of the 5-methyl-2-furanylmethyl radical. Sirjean B; Fournet R J Phys Chem A; 2012 Jun; 116(25):6675-84. PubMed ID: 22650318 [TBL] [Abstract][Full Text] [Related]
4. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study. Sirjean B; Fournet R Phys Chem Chem Phys; 2013 Jan; 15(2):596-611. PubMed ID: 23183719 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition. da Silva G; Bozzelli JW; Asatryan R J Phys Chem A; 2009 Jul; 113(30):8596-606. PubMed ID: 19572687 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen abstraction from n-butanol by the hydroxyl radical: high level ab initio study of the relative significance of various abstraction channels and the role of weakly bound intermediates. Moc J; Simmie JM J Phys Chem A; 2010 May; 114(17):5558-64. PubMed ID: 20380410 [TBL] [Abstract][Full Text] [Related]
7. Multichannel RRKM-TST and direct-dynamics VTST study of the reaction of hydroxyl radical with furan. Mousavipour SH; Ramazani S; Shahkolahi Z J Phys Chem A; 2009 Mar; 113(12):2838-46. PubMed ID: 19296709 [TBL] [Abstract][Full Text] [Related]
8. High-level ab initio enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan. Feller D; Simmie JM J Phys Chem A; 2012 Nov; 116(47):11768-75. PubMed ID: 23121013 [TBL] [Abstract][Full Text] [Related]
9. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: next next-generation biofuels. Simmie JM J Phys Chem A; 2012 May; 116(18):4528-38. PubMed ID: 22494635 [TBL] [Abstract][Full Text] [Related]
10. Syntheses and pyrolyses of furan analogues of α-oxo-o-quinodimethanes. Formation of methylenecyclobutenone and 1-buten-3-yne via a vinylcarbene-cyclopropene rearrangement. Tseng PW; Kung CY; Chen HY; Chou CH J Org Chem; 2011 Oct; 76(20):8440-6. PubMed ID: 21913667 [TBL] [Abstract][Full Text] [Related]
11. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols. Simmie JM; Curran HJ J Phys Chem A; 2009 Jul; 113(27):7834-45. PubMed ID: 19518123 [TBL] [Abstract][Full Text] [Related]
12. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH). Lo PK; Lau KC J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670 [TBL] [Abstract][Full Text] [Related]
13. The reaction of phenyl radical with molecular oxygen: a G2M study of the potential energy surface. Tokmakov IV; Kim GS; Kislov VV; Mebel AM; Lin MC J Phys Chem A; 2005 Jul; 109(27):6114-27. PubMed ID: 16833949 [TBL] [Abstract][Full Text] [Related]
14. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
15. Detection of OH radical in laser induced photodissociation of tetrahydrofuran at 193 nm. SenGupta S; Upadhyaya HP; Kumar A; Naik PD; Bajaj P J Chem Phys; 2005 Mar; 122(12):124309. PubMed ID: 15836380 [TBL] [Abstract][Full Text] [Related]
16. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. da Silva G; Chen CC; Bozzelli JW J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501 [TBL] [Abstract][Full Text] [Related]
17. Primary steps in the reaction of OH radicals with peptide systems: perspective from a study of model amides. Doan HQ; Davis AC; Francisco JS J Phys Chem A; 2010 Apr; 114(16):5342-57. PubMed ID: 20369811 [TBL] [Abstract][Full Text] [Related]
18. Thermal activation of methane and ethene by bare MO·+ (M=Ge, Sn, and Pb): a combined theoretical/experimental study. Chen K; Wang ZC; Schlangen M; Wu YD; Zhang X; Schwarz H Chemistry; 2011 Aug; 17(35):9619-25. PubMed ID: 21818815 [TBL] [Abstract][Full Text] [Related]
19. Formation enthalpies and bond dissociation energies of alkylfurans. The strongest CX bonds known? Simmie JM; Curran HJ J Phys Chem A; 2009 Apr; 113(17):5128-37. PubMed ID: 19331407 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric chemistry of two biodiesel model compounds: methyl propionate and ethyl acetate. Andersen VF; Berhanu TA; Nilsson EJ; Jørgensen S; Nielsen OJ; Wallington TJ; Johnson MS J Phys Chem A; 2011 Aug; 115(32):8906-19. PubMed ID: 21797203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]