These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21679081)

  • 1. Computational biomechanics to simulate the femoropopliteal intersection during knee flexion: a preliminary study.
    Diehm N; Sin S; Hoppe H; Baumgartner I; Büchler P
    J Endovasc Ther; 2011 Jun; 18(3):388-96. PubMed ID: 21679081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of knee flexion on the femoropopliteal artery: a computational study.
    Ní Ghriallais R; Bruzzi M
    Med Eng Phys; 2013 Nov; 35(11):1620-8. PubMed ID: 23810284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion.
    MacTaggart JN; Phillips NY; Lomneth CS; Pipinos II; Bowen R; Baxter BT; Johanning J; Longo GM; Desyatova AS; Moulton MJ; Dzenis YA; Kamenskiy AV
    J Biomech; 2014 Jul; 47(10):2249-56. PubMed ID: 24856888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational analysis of the deformation of the femoropopliteal artery with stenting.
    Ní Ghriallais R; Bruzzi M
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24686902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic pitfalls in postinterventional intraarterial magnetic resonance angiography after recanalization of femoropopliteal arterial occlusions.
    Huegli RW; Aschwanden M; Kos S; Rasmus M; Jaeger K; Jacob AL; Bilecen D
    Acta Radiol; 2008 Dec; 49(10):1129-36. PubMed ID: 19031180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend.
    Baldwin MA; Clary C; Maletsky LP; Rullkoetter PJ
    J Biomech; 2009 Oct; 42(14):2341-8. PubMed ID: 19720376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Animal Model of Human Peripheral Arterial Bending and Deformation.
    El Khoury R; Nikanorov A; McCarroll E; LeClerc G; Guy LG; Laflamme M; Mailloux A; Schwartz LB
    J Surg Res; 2019 Sep; 241():240-246. PubMed ID: 31035138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thigh-calf contact: does it affect the loading of the knee in the high-flexion range?
    Zelle J; Barink M; De Waal Malefijt M; Verdonschot N
    J Biomech; 2009 Mar; 42(5):587-93. PubMed ID: 19200996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method to investigate in vivo knee behavior using a finite element model of the lower limb.
    Beillas P; Papaioannou G; Tashman S; Yang KH
    J Biomech; 2004 Jul; 37(7):1019-30. PubMed ID: 15165872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical validation of finite element models for two silicone metacarpophalangeal joint implants.
    Hussein AI; Stranart JC; Meguid SA; Bogoch ER
    J Biomech Eng; 2011 Feb; 133(2):024501. PubMed ID: 21280884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.