BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 21679117)

  • 1. Proteomic responses of skeletal and cardiac muscle to exercise.
    Burniston JG; Hoffman EP
    Expert Rev Proteomics; 2011 Jun; 8(3):361-77. PubMed ID: 21679117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle.
    Cho Y; Ross RS
    Physiol Genomics; 2018 Sep; 50(9):746-757. PubMed ID: 29958080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the exercise-related proteome signature in skeletal muscle.
    Padrão AI; Ferreira R; Amado F; Vitorino R; Duarte JA
    Proteomics; 2016 Mar; 16(5):816-30. PubMed ID: 26632760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of proteomics in muscle exercise physiology.
    Hesketh SJ; Stansfield BN; Stead CA; Burniston JG
    Expert Rev Proteomics; 2020; 17(11-12):813-825. PubMed ID: 33470862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise.
    Cervone DT; Moreno-Justicia R; Quesada JP; Deshmukh AS
    Scand J Med Sci Sports; 2024 Jan; 34(1):e14334. PubMed ID: 36973869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise and cardiac health: physiological and molecular insights.
    Moreira JBN; Wohlwend M; Wisløff U
    Nat Metab; 2020 Sep; 2(9):829-839. PubMed ID: 32807982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome.
    Petriz BA; Gomes CP; Almeida JA; de Oliveira GP; Ribeiro FM; Pereira RW; Franco OL
    J Cell Physiol; 2017 Feb; 232(2):257-269. PubMed ID: 27381298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic investigation of human skeletal muscle before and after 70 days of head down bed rest with or without exercise and testosterone countermeasures.
    Dillon EL; Soman KV; Wiktorowicz JE; Sur R; Jupiter D; Danesi CP; Randolph KM; Gilkison CR; Durham WJ; Urban RJ; Sheffield-Moore M
    PLoS One; 2019; 14(6):e0217690. PubMed ID: 31194764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic study of skeletal muscle in obesity and type 2 diabetes: progress and potential.
    Kruse R; Højlund K
    Expert Rev Proteomics; 2018 Oct; 15(10):817-828. PubMed ID: 30251560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle.
    Lindinger MI
    J Mol Cell Cardiol; 1995 Apr; 27(4):1011-22. PubMed ID: 7563098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversible plasma and muscle protein oxidation and physical exercise.
    Gorini G; Gamberi T; Fiaschi T; Mannelli M; Modesti A; Magherini F
    Free Radic Res; 2019 Feb; 53(2):126-138. PubMed ID: 30513020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs differentially regulated in cardiac and skeletal muscle in health and disease: potential drug targets?
    Winbanks CE; Ooi JY; Nguyen SS; McMullen JR; Bernardo BC
    Clin Exp Pharmacol Physiol; 2014 Sep; 41(9):727-37. PubMed ID: 25115402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle.
    Hingst JR; Bruhn L; Hansen MB; Rosschou MF; Birk JB; Fentz J; Foretz M; Viollet B; Sakamoto K; Færgeman NJ; Havelund JF; Parker BL; James DE; Kiens B; Richter EA; Jensen J; Wojtaszewski JFP
    Mol Metab; 2018 Oct; 16():24-34. PubMed ID: 30093357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise and the nitric oxide vasodilator system.
    Maiorana A; O'Driscoll G; Taylor R; Green D
    Sports Med; 2003; 33(14):1013-35. PubMed ID: 14599231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.
    McMillan EM; Paré MF; Baechler BL; Graham DA; Rush JW; Quadrilatero J
    PLoS One; 2015; 10(3):e0119382. PubMed ID: 25799101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle.
    Cobley JN; Sakellariou GK; Husi H; McDonagh B
    Free Radic Biol Med; 2019 Feb; 132():24-32. PubMed ID: 30219702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proteomic analysis of the acute effects of high-intensity exercise on skeletal muscle proteins in fasted rats.
    Guelfi KJ; Casey TM; Giles JJ; Fournier PA; Arthur PG
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):952-7. PubMed ID: 17002673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.
    Drake JC; Wilson RJ; Yan Z
    FASEB J; 2016 Jan; 30(1):13-22. PubMed ID: 26370848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanisms for Exercise Training-Induced Changes in Vascular Structure and Function: Skeletal Muscle, Cardiac Muscle, and the Brain.
    Olver TD; Ferguson BS; Laughlin MH
    Prog Mol Biol Transl Sci; 2015; 135():227-57. PubMed ID: 26477917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle.
    Aydin S; Kuloglu T; Aydin S; Eren MN; Celik A; Yilmaz M; Kalayci M; Sahin İ; Gungor O; Gurel A; Ogeturk M; Dabak O
    Peptides; 2014 Feb; 52():68-73. PubMed ID: 24345335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.