BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21679118)

  • 1. Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis.
    Gao M; Deng C; Zhang X
    Expert Rev Proteomics; 2011 Jun; 8(3):379-90. PubMed ID: 21679118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis.
    Li Y; Zhang X; Deng C
    Chem Soc Rev; 2013 Nov; 42(21):8517-39. PubMed ID: 23933677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis.
    Li Y; Xu X; Deng C; Yang P; Zhang X
    J Proteome Res; 2007 Sep; 6(9):3849-55. PubMed ID: 17676785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of peptides in serum by C(8)-functionalized magnetic nanoparticles for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Yao N; Chen H; Lin H; Deng C; Zhang X
    J Chromatogr A; 2008 Mar; 1185(1):93-101. PubMed ID: 18262195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-chromatographic and mass-spectrometric identification of lens proteins using microwave-assisted digestion with trypsin-immobilized magnetic nanoparticles.
    Miao A; Dai Y; Ji Y; Jiang Y; Lu Y
    Biochem Biophys Res Commun; 2009 Mar; 380(3):603-8. PubMed ID: 19285008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles.
    Kuo CW; Wu IL; Hsiao HH; Khoo KH
    Anal Bioanal Chem; 2012 Mar; 402(9):2765-76. PubMed ID: 22287049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides.
    Zhao M; Xie Y; Deng C; Zhang X
    J Chromatogr A; 2014 Aug; 1357():182-93. PubMed ID: 24835765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.
    Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrazide-functionalized magnetic microspheres for the selective enrichment of digested tryptophan-containing peptides in serum.
    Yu Y; Liu M; Yan G; He Y; Xu C; Shen H; Yang P
    Talanta; 2011 Aug; 85(2):1001-6. PubMed ID: 21726730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute quantification strategies in proteomics based on mass spectrometry.
    Brönstrup M
    Expert Rev Proteomics; 2004 Dec; 1(4):503-12. PubMed ID: 15966845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
    Liu J; Lin S; Qi D; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Dec; 1176(1-2):169-77. PubMed ID: 18021785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line.
    Tang J; Liu Y; Yin P; Yao G; Yan G; Deng C; Zhang X
    Proteomics; 2010 May; 10(10):2000-14. PubMed ID: 20217867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins.
    Lu Z; He L; Yin Y
    Chem Commun (Camb); 2010 Sep; 46(33):6174-6. PubMed ID: 20657897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient enrichment and desalting of protein digests using magnetic mesocellular carbon foams in matrix-assisted laser desorption/ionization mass spectrometry.
    Kim YP; Cho K; Lee D; Piao Y; Ahn YH; Yoo JS; Hyun T; Kim HS
    Rapid Commun Mass Spectrom; 2007; 21(21):3435-42. PubMed ID: 17902195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics studies of post-translational modifications in plants.
    Kwon SJ; Choi EY; Choi YJ; Ahn JH; Park OK
    J Exp Bot; 2006; 57(7):1547-51. PubMed ID: 16551683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis.
    Lin S; Yun D; Qi D; Deng C; Li Y; Zhang X
    J Proteome Res; 2008 Mar; 7(3):1297-307. PubMed ID: 18257514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.