These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21679344)

  • 1. Detection and signaling of glucose in the intestinal mucosa--vagal pathway.
    Ashley Blackshaw L; Young RL
    Neurogastroenterol Motil; 2011 Jul; 23(7):591-4. PubMed ID: 21679344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats.
    Vincent KM; Sharp JW; Raybould HE
    Neurogastroenterol Motil; 2011 Jul; 23(7):e282-93. PubMed ID: 21303432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus.
    Lee J; Cummings BP; Martin E; Sharp JW; Graham JL; Stanhope KL; Havel PJ; Raybould HE
    Am J Physiol Regul Integr Comp Physiol; 2012 Mar; 302(6):R657-66. PubMed ID: 22160540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter.
    Freeman SL; Bohan D; Darcel N; Raybould HE
    Am J Physiol Gastrointest Liver Physiol; 2006 Sep; 291(3):G439-45. PubMed ID: 16675747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin release and uptake in the gastrointestinal tract.
    Bertrand PP; Bertrand RL
    Auton Neurosci; 2010 Feb; 153(1-2):47-57. PubMed ID: 19729349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility.
    Gershon MD
    Aliment Pharmacol Ther; 2004 Nov; 20 Suppl 7():3-14. PubMed ID: 15521849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-gut axis and its role in the control of food intake.
    Konturek SJ; Konturek JW; Pawlik T; Brzozowski T
    J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells?
    Spencer NJ; Nicholas SJ; Robinson L; Kyloh M; Flack N; Brookes SJ; Zagorodnyuk VP; Keating DJ
    Am J Physiol Gastrointest Liver Physiol; 2011 Sep; 301(3):G519-27. PubMed ID: 21700904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.
    Raybould HE; Glatzle J; Robin C; Meyer JH; Phan T; Wong H; Sternini C
    Am J Physiol Gastrointest Liver Physiol; 2003 Mar; 284(3):G367-72. PubMed ID: 12409280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose, epithelium, and enteric nervous system: dialogue in the dark.
    Pfannkuche H; Gäbel G
    J Anim Physiol Anim Nutr (Berl); 2009 Jun; 93(3):277-86. PubMed ID: 19646102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects on gastrointestinal and hepatic vagal afferent fibers in the rat by the anti-cancer agent cisplatin.
    Horn CC; Richardson EJ; Andrews PL; Friedman MI
    Auton Neurosci; 2004 Sep; 115(1-2):74-81. PubMed ID: 15507408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat.
    Berthoud HR; Jedrzejewska A; Powley TL
    J Comp Neurol; 1990 Nov; 301(1):65-79. PubMed ID: 1706359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat.
    Nelson DW; Sharp JW; Brownfield MS; Raybould HE; Ney DM
    Endocrinology; 2007 May; 148(5):1954-62. PubMed ID: 17234710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural control of the serotonin content in mammalian enterochromaffin cells.
    Pettersson G
    Acta Physiol Scand Suppl; 1979; 470():1-30. PubMed ID: 229694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enteroendocrine cells: a review of their role in brain-gut communication.
    Latorre R; Sternini C; De Giorgio R; Greenwood-Van Meerveld B
    Neurogastroenterol Motil; 2016 May; 28(5):620-30. PubMed ID: 26691223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-HT 3 receptors mediate the time-dependent vagal afferent modulation of nociception during chronic food allergen-sensitized visceral hyperalgesia in rats.
    Chen S; Li J; Zhang L; Dong X; Gao W; Mo J; Chen H; Xiao S; Li Y
    Neurogastroenterol Motil; 2009 Nov; 21(11):1222-e113. PubMed ID: 19558425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gut-brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon.
    Dodds KN; Travis L; Kyloh MA; Jones LA; Keating DJ; Spencer NJ
    Am J Physiol Gastrointest Liver Physiol; 2022 May; 322(5):G523-G533. PubMed ID: 35293258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.